BIOTIC Species Information for Himanthalia elongata
Click here to view the MarLIN Key Information Review for Himanthalia elongata
Researched byNicola White Data supplied byMarLIN
Refereed byDr Dagmar Stengel
Reproduction/Life History
Reproductive typeGonochoristic
Developmental mechanismNot relevant
Ovoviviparous
Insufficient information
Spores (sexual / asexual)
Oviparous
See additional information
Reproductive SeasonJune to December Reproductive LocationInsufficient information
Reproductive frequencySemelparous Regeneration potential No
Life span3-5 years Age at reproductive maturity1-2 years
Generation time3-5 years FecundityInsufficient information
Egg/propagule sizeZygotes 0.2 mm across Fertilization typeInsufficient information
Larvae/Juveniles
Larval/Juvenile dispersal potentialInsufficient information Larval settlement periodInsufficient information
Duration of larval stageInsufficient information   
Reproduction Preferences Additional Information
  • Himanthalia elongata has a life history and growth pattern unique among the Fucales. The species invests 98 percent of the total biomass in reproductive rather than vegetative tissue. It is usually has a biennial lifecycle, reproducing once and then dying.
  • The reproductive bodies or receptacles take the form of long straps, which sprout from the centre of the button. When the plants are fertile the straps become mottled with brown spots, each spot with a pale centre marking the opening to the conceptacle.
  • Gametes are released from June until winter. Usually germlings become visible on the shore in early March and form buttons with an average size of 10-25 mm by August. Those buttons which grow to 15 mm by November produce receptacles that autumn. The receptacles grow little in length during autumn and winter but increase rapidly between February and May. From June onwards, adult plants release gametes on a low tide by liberating them into mucus, which dribbles onto the substratum below. The time of reproduction is strongly site dependent, probably due to water temperature.
  • Zygotes of the species are very large in comparison to most seaweeds. They are spherical, heavy and measure 0.2mm across so that they rapidly settle to the substratum. After fertilisation there is a long period of 5-7 days before attaching rhizoids develop. During this period the zygote is anchored to the substratum using the fertilization membrane, which is expanded into a wide brim. Zygotes are incapable of growing on silt, but germlings are tolerant of temporary cover by drifting sand.
  • Gamete dispersal is thought to be limited so recruitment from external populations is probably low. Early germling growth is probably strongly influenced by the presence of adults, as reproductive thalli provide protection from desiccation and high irradiances, although shading could limit growth rate of germlings (Stengel, pers. comm.).
Reproduction References Stengel et al., 1999, Moss et al., 1973,
About MarLIN | Contact, Enquiries & Feedback | Terms & Conditions | Funding | Glossary | Accessibility | Privacy | Sponsorship

Creative Commons License BIOTIC (Biological Traits Information Catalogue) by MarLIN (Marine Life Information Network) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Permissions beyond the scope of this license are available at http://www.marlin.ac.uk/termsandconditions.php. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Based on a work at www.marlin.ac.uk.