MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

Saccharina latissima with foliose red seaweeds and ascidians on sheltered tide-swept infralittoral rock

08-11-2016

Summary

UK and Ireland classification

UK and Ireland classification

Description

Sheltered, tide-swept rock in south-western Britain tends to be restricted to estuarine conditions, where variable salinity and increased turbidity have a significant effect on the biota. Due to the turbidity of the water, the infralittoral zone is restricted to very shallow depths. Unlike the tide-swept channels in sealochs, which support a mixed kelp canopy, the rock in these estuaries is characterized by Saccharina latissima alone, occurring in relatively low abundance (Frequent). The brown alga Desmarestia ligulata can occur in this biotope, though never dense, along with the non-native brown seaweed Sargassum muticum. Beneath the sparse kelp, cobbles and boulders, often surrounded by sediment, are encrusted by fauna and often a dense turf of red seaweed. The foliose red seaweeds associated with this biotope include Callophyllis laciniata, Nitophyllum punctatum, Kallymenia reniformis, Gracilaria gracilis, Gymnogongrus crenulatus, Hypoglossum hypoglossoides, Rhodophyllis divaricata, Chylocladia verticillata, Cryptopleura ramosa and Erythroglossum laciniatum as well as the filamentous Ceramium nodulosum and Pterothamnion plumula. Green seaweeds Ulva lactuca, Bryopsis plumosa and Cladophora spp. may be locally abundant. The dominating faunal species vary from site to site but include sponges such as Halichondria panicea, Esperiopsis fucorum, Dysidea fragilis and Hymeniacidon perleve as well as ascidians, particularly Dendrodoa grossularia and Morchellium argus, which can cover the rocks. Also present is the anthozoan Anemonia viridis, the barnacle Balanus crenatus and the tube-building polychaete Spirobranchus triqueter. The hydroid Plumularia setacea can cover rocks and seaweed fronds Of the range of solitary ascidians found in the north-west, only Ascidiella aspersa tends also to be present in these south-western inlets. There is also a general absence of echinoderms. Where there is vertical rock present, it tends to support more fauna, including barnacles Balanus crenatus, the ascidians Clavelina lepadiformis and Botryllus schlosseri and sometines the featherstar Antedon bifida. Where soft rock allows, such as the limestone in Plymouth Sound, rock-boring organisms such as Polydora sp. may be locally abundant. Sheltered, tide-swept rock is generally restricted to the narrows or tidal rapids of marine inlets. The clear tide-swept waters of Scottish sealochs are significantly different to the marine inlets of south-west Britain. This biotope deals with the latter.

Depth range

-

Additional information

-

Listed By

Listed By

- none -

Further information sources

Further information sources

Search on:

Sensitivity reviewHow is sensitivity assessed?

Sensitivity characteristics of the habitat and relevant characteristic species

IR.MIR.KT.LsacT is typically restricted to estuarine environments, in which strong tidal streams, variable salinity and high turbidity influence the community. Beneath a sparse Saccharina latissima (syn. Laminaria saccharina) canopy is a community of encrusting fauna and a dense turf of red seaweeds. Ascidians can also be a dominant component of the understory, notably Dendrodoa grossularia and Morchellium argus which can cover rock surfaces.

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all characterizing species in the biotope. At the time of writing limited evidence could be found for Morchellium argus. Hawkins & Harkin (1985) also demonstrated that if the canopy forming kelps are removed the understory red seaweed communities are likely to perish. It was therefore deemed that the red seaweed community of IR.MIR.KT.LsacT was dependent on the presence of Saccharina latissima. Saccharina latissima and Dendrodoa grossularia are therefore the primary foci of research, however examples of important species groups are mentioned where appropriate.

Resilience and recovery rates of habitat

Saccharina lattisma is a perennial kelp characteristic of wave sheltered sites of the North East Atlantic, distributed from northern Portugal to Spitzbergen, Svalbard (Birkett et al., 1998; Conor et al., 2004; Bekby & Moy, 2011; Moy & Christie, 2012). Saccharina lattisma is capable of reaching maturity within 15-20 months (Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke, 1948). Maximum growth has been recorded in late winter early spring, in late summer and autumn growth rates slow (Parke, 1948; Lüning, 1979; Birkett et al., 1998). The overall length of the sporophyte may not change during the growth season due to marginal (distal) erosion of the blade but extension growth of the blade has been measured at 1.1 cm/day, with total length addition of over 2.25m of tissue per year (Birkett et al., 1998). Saccharina latissima has a heteromorphic life strategy.  Vast numbers of zoospores are released from sori located centrally on the blade between autumn and winter. Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, germinate into juvenile sporophytes from winter-spring.  Kelp zoospores are expected to have a large dispersal range, however zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen et al., 1995) Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area (Kain, 1979; Fredriksen et al., 1995).

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). However, Bolton & Lüning (1982) reported an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte. Growth was inhibited by 50-70% at 20°C and, all experimental specimens completely disintegrated after 7 days at 23°C.. In the field, Saccharina latissima has, however, shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. Therefore, the response of Saccharina latissima to a change in temperatures is likely to be locally variable.

In 2002 a large scale decline of Saccharina latissima was discovered on the Norwegian coast (Moy & Christie, 2012). A subsequent large survey was undertaken between 2004-2009 of 660 sites covering 34,000 km of south and west Norway to assess the decline of Saccharina latissima abundance and distribution (Moy & Christie, 2012). The survey indicated an 83% reduction of Saccharina latissima forests across the south Norwegian region of Skagerrak.  The west Norwegian coast was less affected, but Saccharina latissima was either absent or very sparse at 38% of sites where it was expected to be abundant.  At all sites where Saccharina latissima was sparse a community of ephemeral macro-algae species was dominant and persisted throughout the study period (2004-2009).  Bekby & Moy (2011) modelled the regional decline which indicated a decline of 50.7% of Saccharina latissima from Skagerrak, Norway. Approximately 50% of Europe’s Saccharina latissima is found in Norway (Moy et al., 2006), therefore, despite large discrepancies between the two estimates of Saccharina latissima decline (50.7-83%) the results indicated a significant decline in Saccharina latissima across the region. Moy & Christie (2012) suggested the ephemeral filamentous macroalgae communities represented a stable state shift that had persisted throughout the study period (2004-2009).  Although no measurements were made, they suggested that the decline was due to low tidal movement and wave action in the worst affected areas combined with the impacts of dense human populations and increased land run-off multiple stressors such as eutrophication, increasing regional temperature, increased siltation and overfishing may also be acting synergistically to cause the observed habitat shift.

Other factors that are likely to influence the recovery of kelp biotopes is competitive interactions with the Invasive Non Indigenous Species (INIS) Undaria pinnatifida (Smale et al., 2013; Brodie et al., 2014; Heiser 2014). Undaria pinnatifida has received a large amount of research attention as an INIS which could out-compete UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was first recorded in Plymouth Sound, UK in 2003 (NBN, 2015) subsequent surveys in 2011 have reported that Undaria pinnatifida is wide spread throughout Plymouth Sound, colonizing rocky reef habitats. Where Undaria pinnatifida is present there was a significant decrease in the abundance of other Laminaria species, including Laminaria hyperborea (Heiser et al., 2014). In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete Undaria pinnatifida and redominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery of the substratum was partially due to an annual Undaria pinnatifida die back, which as noted by Heiser et al. (2014) did not occur in Plymouth sound, UK. It is unknown whether Undaria pinnatifida will out-compete native macro-algae in the UK. However from 2003-2011 Undaria pinnatifida had spread throughout Plymouth sound, UK, becoming a visually dominant species at some locations within summer months (Hieser et al., 2014). At the time of writing there is limited evidence available to assess the ecological impacts of Undaria pinnatifida on Laminaria hyperborea associated communities. Kelp biotopes are unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely to occur.

Dendrodoa grossularia is a small solitary ascidian (1.5-2 cm diameter (Miller, 1954)) which is distributed throughout the Arctic ocean to its southern range edge in the British Isles (WORMS, 2015). Dendrodoa grossularia is described as a social ascidian which can live as an individual or in large aggregations of 200+ individuals (MarLIN, 2015). Settlement occurs from April-June, by the following summer individuals reach their maximum size. Life expectancy is expected to be 18-24months. Sexual maturity is reached within the second year of growth and the release of gametes occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15 deg C and totally suppressed above ca. 20 deg C (Miller, 1954). Dendrodoa grossularia has been recorded as an abundant component of benthic fauna in Nottinghambukta, Svalbard where annual temperature can range from 3-5 °C (Beszczynska-Möller & Dye, 2013) and salinity between 6 and 20‰ (Różycki & Gruszczyński, 1991). At the time of writing no information could be found on the upper temperature threshold of mature Dendrodoa grossularia or hyper salinity tolerances. Kenny & Rees (1994) observed Dendrodoa grossularia was able to recolonize rapidly following aggregate dredging. Following experimental dredging of a site off the English coast, which extracted an area of 1-2m wide and 0.3-0.5m deep, Dendrodoa grossularia was able to recolonize and attained 40% of pre-dredge abundance and 23% of biomass within 8 months. This recover rate combined with the ability of this species to reach sexual maturity within its first year suggests that Dendrodoa grossularia can recover from disturbance within 2 years.

Resilience assessment. Saccharina latissima and Dendrodoa grossularia have rapid recovery rates. Following clearance of Strongylocentrotus droebachiensis from ‘urchin Barrens’ Saccharina latissima was a rapid colonizer appearing after a few weeks. Furthermore Saccharina latissima can reach maturity within 15-20 months (Birkett et al., 1998). Dendrodoa grossularia can reach sexual maturity within 1 year of growth and can rapidly recover following severe habitat alteration. Resilience has therefore been assessed as ‘High’.

Hydrological Pressures

 ResistanceResilienceSensitivity
None High Medium
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). Optimal temperature for Saccharina latissima sporophyte growth was 10-15°C (Bolton & Lüning, 1982), while  reported  growth was inhibited by 50-70% at 20°C and all experimental specimens completely disintegrated after 7 days at 23°C.  In the field, Saccharina latissima has however shown significant regional variation in its acclimation response to changing environmental conditions.  For example Gerard & Dubois (1988) found Saccharina latissima sporophytes which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.  Therefore, the response Saccharina latissima to a change in temperatures is likely to be locally variable.

Andersen et al. (2011) transplanted Saccharina latissima in the Skagerrak region, Norway and from 2006-2009. There was annual variation however high mortality occurred from August-November within each year of the experiment. In 2008 of the original 17 sporophytes 6 survived from March-September (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration which temperatures remain above 20°C. High sea temperatures has been linked to slow growth of Saccharina latissima which is likely to decrease the photosynthetic ability of, and increase the vulnerability of Saccharina latissima to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). These factors combined with establishment of annual filamentous algae in Skagerrak, Norway are likely to prevent the establishment of self sustaining populations in the area (Anderson et al., 2011; Moy & Christie, 2012).

Dendrodoa grossularia gamete release occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15 °C and totally suppressed above ca. 20 °C (Miller, 1954). At the time of writing no information could be found on the upper temperature threshold of mature Dendrodoa grossularia. However, Dendrodoa grossularia is at its southern range edge within the UK and therefore a dramatic increase in temperature that is outside the normal range for the UK may cause mortality.

IR.MIR.KT.LsacT is recorded exclusively within the south west UK (Connor et al., 2004), where temperature ranges from 8-16 degC (Beszczynska-Möller & Dye, 2013).

Sensitivity assessment. A 2°C increase for one year may impair Saccharina latissima sporophyte growth but otherwise not affect the characterizing species. Saccharina latissima populations that are not acclimated to >20°C may incur mass mortality within 3 weeks of exposure. Therefore, an increase of 5°C combined with high summer temperatures may cause mass Saccharina latissima mortality. Resistance has been assessed as ‘None’, and resilience as ‘High’. Sensitivity has been assessed as ‘Medium’.

High High Not sensitive
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

Saccharina lattissima has a lower temperature threshold for sporophyte growth at 0°C (Lüning, 1990). Subtidal red algae can survive at temperatures between -2 °C and 18-23 °C (Lüning, 1990; Kain & Norton, 1990). Dendrodoa grossularia is has been recorded from Nottinghambukta, Svalbard where annual temperature can range from 3-5°C.

Sensitivity assessment. An acute or long term decrease in temperature within the UK, at the benchmark level, is not likely to have a significant effect on IR.MIR.KT.LsacT. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not sensitive’.

High High Not sensitive
Q: Low
A: NR
C: NR
Q: High
A: Low
C: High
Q: Low
A: NR
C: NR

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu.  Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. The affect of long term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested. The hypersaline tolerance of Dendrodoa grossularia is unknown.

Sensitivity assessment. The evidence suggests that Saccharina latissima can tolerate short term (<5 days) exposure to hypersaline conditions of ≥40‰. Resistance has been assessed as ‘High’, resilience as ‘High’. The sensitivity of this biotope to an increase in salinity has been assessed as ‘Not Sensitive’.

Low High Low
Q: High
A: High
C: High
Q: High
A: Low
C: High
Q: High
A: Low
C: High

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at approx. 30% of control. After 5 days at 5 psu, Saccharina latissima specimens became bleached and showed signs of severe damage. The affect of long term salinity changes (>5 days) or salinity >60 psu on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted on Saccharina latissima from the Arctic, and the authors suggest that at extremely low water temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes more effectively and quicker.

Dendrodoa grossularia has been recorded as an abundant component of benthic fauna in Nottinghambukta, Svalbard where salinity can range from 6 and 20‰ (Różycki & Gruszczyński, 1991).

Sensitivity assessment. A decrease in one MNCR salinity scale from ‘Variable Salinity’ (30-40psu) to ‘Reduced Salinity’ (18-30 psu) may cause a decline in the photosynthetic ability of Saccharina latissima and hence growth. Dendrodoa grossularia abundance in Nottinghambukta, Svalbard where salinity is extremely low indicates it would be unaffected. Resistance has been assessed as ‘Low’ and resilience as ‘High’. Therefore, sensitivity of this biotope to a decrease in salinity has been assessed as ‘Low’.

High High Not sensitive
Q: Medium
A: High
C: High
Q: Medium
A: High
C: High
Q: Medium
A: High
C: High

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites; the first had maximal water velocities of 0.3m/sec and the second 0.1m/sec. At site 1 Saccharina latissima had significantly larger biomass than at site 2 (16 kg/m to 12 kg/m respectively). Peteiro & Freire (2013) suggested that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard & Mann (1979) found Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1m/sec) when compared to weak tidal streams (<0.5m/sec).

Despite the results published in Gerard & Mann (1979) Saccharina latissima can characterize or be a dominant in the tide swept biotopes IR.MIR.KT.XKTX & IR.MIR.KT.LsacT, which have been recorded from very strong (>3m/sec) to moderately strong tidal streams (≤1m/sec) (Connor et al., 2004), indicating Saccharina latissima can tolerate greater tidal streams than 1m/sec.

Sensitivity assessment. IR.MIR.KT.LsacT is recorded predominantly from strong-moderately strong (0.5-3m/sec) tidal streams. Large scale changes tidal velocities (>1m/sec) may increase the predominance of tide swept biotopes (e.g. IR.MIR.KR.LhypT/X, IR.MIR.KT.XKTX or IR.MIR.KT.LsacT) and replace IR.MIR.KT.LsacT. However, the available evidence suggests that a change in flow velocities of between 0.1-0.2m/sec would have no significant effect on IR.MIR.KT.LsacT. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

Low High Low
Q: Low
A: NR
C: NR
Q: High
A: Low
C: High
Q: Low
A: Low
C: Low

IR.MIR.KT.LsacT core records occur exclusively from 0-5m (Connor et al., 2004). An increase in emergence will result in an increased risk of desiccation and mortality of Saccharina latissima in shallow examples of the biotope. Removal of canopy forming kelps has also been shown to increase desiccation and mortality of the understory macro-algae (Hawkins & Harkin, 1985). Several mobile species such as sea urchins and brittle stars are likely to move away. However, providing that suitable substrata are present, the biotope is likely to re-establish further down the shore within a similar emergence regime to that which existed previously.

Sensitivity assessment. Resilience has been assessed as ‘Low’. Resistance as ‘High’. The sensitivity of this biotope to a change in emergence is considered as ‘Low’.

High High Not sensitive
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

Wave exposure is one of the principal defining features of kelp biotopes, and changes in wave exposure are likely to alter the relative abundance of the kelp species, grazing and understory community, and hence, the biotope (Birkett et al., 2004). Saccharina latissima is rarely dominant at wave exposed sites, however if present, develops a short thick stipe and a short, narrow and tightly wrinkled blade (Birkett et al., 1998). Furthermore, IR.MIR.KT.LsacT is recorded from sheltered to extremely sheltered sites (Connor et al., 2004).

Sensitivity assessment. However a change in near shore significant wave height of 3-5% is unlikely to have any significant effect on IR.MIR.KT.LsacT. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not Sensitive’ at the benchmark level.

Chemical Pressures

 ResistanceResilienceSensitivity
Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Saccharina latissima sporophytes have a low intolerance to heavy metals, but the early life stages are more intolerant. The effects of copper, zinc and mercury on Saccharina latissima have been investigated by Thompson & Burrows (1984). They observed that the growth of sporophytes was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l. Zoospores were found to be more intolerant and significant reductions in survival rates were observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l. Little is known about the effects of heavy metals on echinoderms. Bryan (1984) reported that early work had shown that echinoderm larvae were intolerant of heavy metals, e.g. the intolerance of larvae of Paracentrotus lividus to copper (Cu) had been used to develop a water quality assessment. Kinne (1984) reported developmental disturbances in Echinus esculentus exposed to waters containing 25 µg / l of copper (Cu). Sea-urchins, especially the eggs and larvae, are used for toxicity testing and environmental monitoring (reviewed by Dinnel et al. 1988). Taken together with the findings of Gomez & Miguez-Rodriguez (1999) above it is likely that echinoderms are intolerant of heavy metal contamination.

IR.MIR.KT.SlatT has, however, been considered ‘Not Sensitive' at the pressure benchmark, that assumes compliance with all relevant environmental protection standards.

Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Saccharina latissima fronds, being predominantly subtidal, would not come into contact with freshly released oil but only to sinking emulsified oil and oil adsorbed onto particles (Birkett et al., 1998). The mucilaginous slime layer coating of laminarians may protect them from smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp forests.

Dendrodoa grossularia does grow in the intertidal (Miller, 1954) and may therefore become smothered in the event of an oil spill, however at the time of writing there no evidence to support this.

However this biotope is considered to be 'Not sensitive' at the pressure benchmark, that assumes compliance with all relevant environmental protection standards. 

Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be sensitive to antifouling compounds. Johansson (2009) exposed samples of Saccharina latissima to several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Due to a lack of comparable results within accessible literature this biotope is considered to be 'Not sensitive' at the pressure benchmark, that assumes compliance with all relevant environmental protection standards.

Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

No evidence

Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

No benchmark proposed therefore sensitivity assessment has been assessed as 'Not Sensitive' at the pressure benchmark that assumes compliance with all relevant environmental protection standards.

High High Not sensitive
Q: Medium
A: High
C: High
Q: High
A: High
C: High
Q: Medium
A: High
C: High

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the oxygen depletion is short term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al., 1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration but not cause a loss of the macroalgae population directly. In addition, in tide swept conditions, deoxygenation is likely to highly localised and short lived.  Resistance has been assessed as ‘High’, Resilience as ‘High’. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima  became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected six marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Sensitivity assessment. Although nutrients may not affect kelps directly, indirect effects such as turbidity may significantly affect photosynthesis. Furthermore organic enrichment may denude the associated community. However, the biotope is probably ‘Not sensitive’ at the benchmark levels (i.e. compliance with WFD criteria).

Medium High Low
Q: High
A: High
C: High
Q: High
A: Medium
C: High
Q: High
A: High
C: High

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22 µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Norwegian Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment  works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected six marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Sensitivity assessment. Although nutrients may not affect kelps directly, indirect effects such as turbidity may significantly affect photosynthesis. Furthermore organic enrichment may denude the associated community. Resistance has therefore been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ’Low’.

Physical Pressures

 ResistanceResilienceSensitivity
None Very Low High
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

None Very Low High
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

If rock substrata were replaced with sedimentary substrata this would represent a fundamental change in habitat type, which kelp species would not be able to tolerate (Birkett et al., 1998). The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very low’ or ‘None’. The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa is assessed as ‘High’

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Not relevant

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

The species characterizing this biotope are epifauna or epiflora occurring on hard substrata and would be sensitive to the removal of the habitat. However, extraction of rock substratum is considered unlikely and this pressure is considered to be ‘Not relevant’ to hard substratum habitats.

None High Medium
Q: Low
A: NR
C: NR
Q: High
A: High
C: High
Q: Low
A: Low
C: Low

Low level disturbances (e.g. solitary anchors) are unlikely to cause harm to the biotope as a whole, due to the impact’s small footprint. Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al. 2013) and not directly extracted from the seabed. Thus evidence to assess the resistance of Saccharina latissima to in/direct harvesting or abrasion is limited.

Sensitivity assessment. Abrasion by passing trawls or harvesting of macroalgae is likely remove a large proportion of the kelp biomass.  For example in kelp harvesting is likely to remove all the large canopy forming plants (Svendsen, 1972; Christie et al., 1998).  However, Saccharina latissima has been shown to be an early colonizer with the potential to recover rapidly (Kain, 1967; Lienaas & Christie, 1996). Therefore, resistance has been assessed as ‘None’, resilience as ‘High’, and sensitivity as ‘Low’.

 

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

The species characterizing this biotope group are epifauna or epiflora occurring on hard substrata which is resistant to subsurface penetration. The assessment for abrasion at the surface only is therefore considered to equally represent sensitivity to this pressure. This pressure is not thought relevant to hard rock biotopes.

None High Medium
Q: High
A: High
C: High
Q: High
A: High
C: High
Q: High
A: High
C: High

Suspended Particle Matter (SPM) concentration has a linear relationship with sub surface light attenuation (Kd) (Devlin et al., 2008). An increase in SPM results in a decrease in sub-surface light attenuation. Light availability and water turbidity are principal factors in determining kelp depth range (Birkett et al., 1998). Light penetration influences the maximum depth at which kelp species can grow and it has been reported that laminarians grow at depths at which the light levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of laminarians therefore varies from 100 m in the Mediterranean to only 6-7 m in the silt laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in light attenuation by suspended sediment (Birkett et al. 1998b; Lüning, 1990). Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water turbidity will likely affect the photosynthetic ability of kelp, decrease abundance and density.

Sensitivity Assessment. An increase in water clarity from clear to intermediate (10-100mg/l) represent a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than 50% reduction in photosynthesis of Laminaria spp. Therefore the dominant kelp species will probably suffer a severe decline and resistance to this pressure is assessed as ‘None’.  Resilience is probably to this pressure is defined as ‘High’ at the benchmark. Hence, this biotope is regarded as having a sensitivity of ‘Medium ‘to this pressure.

Medium High Low
Q: Low
A: NR
C: NR
Q: High
A: High
C: High
Q: Low
A: Low
C: Low

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years; Parke, 1948)), IR.MIR.KT.SlatT is likely to be dependent on annual Saccharina latissima recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that kelp gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Dendrodoa grossularia is a small ascidian, capable of reaching a size of approx 8.5 mm (Miller, 1954) and is therefore likely to be inundated by deposition of 5 cm of sediment. If inundation is long lasting then the understory community may be adversely affected. However, IR.MIR.KT.SlatT is found within strong-moderately strong (0.5-3 m/sec) and therefore deposited sediments are unlikely to remain for more than a few tidal cycles.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Medium Medium Medium
Q: Low
A: NR
C: NR
Q: High
A: High
C: High
Q: Low
A: Low
C: Low

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years Parke, 1948)), IR.MIR.KT.SlatT is likely to be dependent on annual recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 30cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Dendrodoa grossularia is a small ascidian, capable of reaching a size of approx 8.5mm (Miller, 1954) and is therefore likely to be inundated by deposition of 30 cm of sediment. If inundation is long lasting then the understory community may be adversely affected. However, IR.MIR.KT.SlatT is found within strong-moderately strong (0.5-3m/sec) and therefore deposited sediments are likely to be cleared rapidly, but inundation is likely to cause mortality in the understory community.

Sensitivity assessment. Resistance has been assessed as ‘Low’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Not assessed. There is no evidence to suggest that litter would affect kelp.

Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

No evidence

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Saccharina lattissima has no hearing perception but vibrations may cause an impact, however no studies exist to support an assessment (where relevant).

Low High Low
Q: Low
A: NR
C: NR
Q: Low
A: NR
C: NR
Q: Low
A: Low
C: Low

There is no evidence to suggest that anthropogenic light sources would affect IR.MIR.KT.SlatT. Shading (e.g. by construction of a pontoon, pier etc) could adversely affect IR.MIR.KT.SlatT in areas where the water clarity is also low, and tip the balance to shade tolerant species, resulting in the loss of the biotope directly within the shaded area. IR.MIR.KT.SlatT is already affected by high water turbidity (Connor et al., 2004), and Saccharina lattissima is therefore relatively sparse.

Sensitivity assessment. Resistance is probably 'Low', with a 'High' resilience and a sensitivity of 'Low', albeit with 'low' confidence due to the lack of direct evidence.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Not relevant–This pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal of spores.  But spore dispersal is not considered under the pressure definition and benchmark.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Not relevant to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface abrasion’.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Not relevant

Biological Pressures

 ResistanceResilienceSensitivity
Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

No evidence

None Very Low High
Q: Medium
A: High
C: High
Q: Medium
A: High
C: High
Q: Medium
A: High
C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was first recorded in the UK, Hamble Estuary, in June 1994 (Fletcher & Manfredi, 1995) and has since spread to a number of British ports. Undaria pinnatifida is an annual species, sporophytes appear in Autumn and grow rapidly throughout winter and spring during which they can reach a length of 1.65m (Birket et al., 1998). Farrell & Fletcher (2006) suggested that native short lived species that occupy similar ecological niches to Undaria pinnatifida, such as Saccharina latissima, are likely to be worst affected and outcompeted by Undaria pinnatifida. Where present an abundance of Undaria pinnatifida has corresponded to a decline in Saccharina lattisima (Farrel & Fletcher, 2006).

In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete U.pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as noted by Heiser et al., (2014) does not occur in Plymouth sound, UK. Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70°C (Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted by Fletcher & Farrell, (1999) once established Undaria pinadifida resists most attempts of long term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which is unlikely.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very Low’. The sensitivity of this biotope to INIS is assessed as ‘High’.

Medium High Low
Q: Medium
A: High
C: Medium
Q: Low
A: NR
C: NR
Q: Low
A: Low
C: Low

Saccharina latissima may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark spots to heavy deformations and completely crippled thalli (Peters & Scaffelke, 1996). Infection can reduce growth rates of host algae.

Sensitivity assessment. Resistance to the pressure is considered ‘Medium’, and resilience ‘High’. The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘Low’.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998).  As a consequence related literature on which to assess the “resistance” of Saccharina latissima to targeted harvesting is sparse. Similarly, at the time of writing, no evidence could be found to suggest that Dendrodoa grossularia is commercially exploited.

Sensitivity assessment. At the time of writing none of the characterising species are commercially extracted from the seabed. If extracted in the future resistance would need to be re-assessed. This pressure has been assessed as ‘Not Relevant’.

None Medium Medium
Q: Low
A: NR
C: NR
Q: High
A: High
C: High
Q: Low
A: Low
C: Low

Incidental removal of characterizing species from this biotope would likely have a fundamental effect on the ecology. Laminaria digitata is commercially extracted Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998). Similarly Dendrodoa grossularia is not currently a commercially exploited species. As a consequence relevant literature on which to assess the “resistance” of IR.MIR.KT.SlatT to incidental harvesting is sparse. If removed the characterizing species are likely to recover within 2 years.

Sensitivity assessment. Resistance has been assessed as ‘None’, resilience as ‘High’ and sensitivity as ‘Medium’.

Bibliography

  1. Bekkby, T. & Moy, F.E., 2011. Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuarine Coastal and Shelf Science, 95 (4), 477-483.

  2. Beszczynska-Möller, A., & Dye, S.R., 2013. ICES Report on Ocean Climate 2012. In ICES Cooperative Research Report, vol. 321 pp. 73.

  3. Birkett, D.A., Maggs, C.A., Dring, M.J. & Boaden, P.J.S., 1998b. Infralittoral reef biotopes with kelp species: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Natura 2000 report prepared by Scottish Association of Marine Science (SAMS) for the UK Marine SACs Project., Scottish Association for Marine Science. (UK Marine SACs Project, vol V.). Available from: http://www.ukmarinesac.org.uk/publications.htm

  4. Bower, S.M., 1996. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish: Bald-sea-urchin Disease. [On-line]. Fisheries and Oceans Canada. [cited 26/01/16]. Available from: http://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/bsudsu-eng.html

  5. Brennan, G., Kregting, L., Beatty, G.E., Cole, C., Elsäßer, B., Savidge, G. & Provan, J., 2014. Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach. Journal of The Royal Society Interface, 11 (95), 20140197.

  6. Brodie J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C. & Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4 (13), 2787-2798.

  7. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  8. Burrows, M.T., Smale, D., O’Connor, N., Rein, H.V. & Moore, P., 2014. Marine Strategy Framework Directive Indicators for UK Kelp Habitats Part 1: Developing proposals for potential indicators. Joint Nature Conservation Comittee,  Peterborough. Report no. 525.

  9. Casas, G., Scrosati, R. & Piriz, M.L., 2004. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions, 6 (4), 411-416.

  10. Chamberlain, Y.M., 1996. Lithophylloid Corallinaceae (Rhodophycota) of the genera Lithophyllum and Titausderma from southern Africa. Phycologia, 35, 204-221.

  11. Christie, H., Fredriksen, S. & Rinde, E., 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia, 375/376, 49-58.

  12. Cole, S., Codling, I.D., Parr, W., Zabel, T., 1999. Guidelines for managing water quality impacts within UK European marine sites [On-line]. UK Marine SACs Project. [Cited 26/01/16]. Available from: http://www.ukmarinesac.org.uk/pdfs/water_quality.pdf

  13. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. Joint Nature Conservation Committee, Peterborough. www.jncc.gov.uk/MarineHabitatClassification.

  14. Connor, D.W., Dalkin, M.J., Hill, T.O., Holt, R.H.F. & Sanderson, W.G., 1997a. Marine biotope classification for Britain and Ireland. Vol. 2. Sublittoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06.

  15. Dauvin, J.C., Bellan, G., Bellan-Santini, D., Castric, A., Francour, P., Gentil, F., Girard, A., Gofas, S., Mahe, C., Noel, P., & Reviers, B. de., 1994. Typologie des ZNIEFF-Mer. Liste des parametres et des biocoenoses des cotes francaises metropolitaines. 2nd ed. Secretariat Faune-Flore, Museum National d'Histoire Naturelle, Paris (Collection Patrimoines Naturels, Serie Patrimoine Ecologique, No. 12). Coll. Patrimoines Naturels, vol. 12, Secretariat Faune-Flore, Paris.

  16. Davies, C.E. & Moss, D., 1998. European Union Nature Information System (EUNIS) Habitat Classification. Report to European Topic Centre on Nature Conservation from the Institute of Terrestrial Ecology, Monks Wood, Cambridgeshire. [Final draft with further revisions to marine habitats.], Brussels: European Environment Agency.

  17. Dayton, P.K. & Tegner, M.J., 1984. Catastrophic storms, El-Nino, and patch stability in a southern-california kelp community. Science, 224 (4646), 283-285.

  18. Dayton, P.K., Tegner, M.J., Parnell, P.E. & Edwards, P.B., 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecological Monographs, 62, 421-445.

  19. Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D. & Tett, P., 2008. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79 (3), 429-439.

  20. Dieck, T.I., 1992. North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia, 31, 147-163.

  21. Dieck, T.I., 1993. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales: Phaeophyta) - ecological and biogeographical implications. Marine Ecology Progress Series, 100, 253-264.

  22. Edwards, A., 1980. Ecological studies of the kelp Laminaria hyperborea and its associated fauna in south-west Ireland. Ophelia, 9, 47-60.

  23. Elner, R.W. & Vadas, R.L., 1990. Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. American Naturalist, 136, 108-125.

  24. Engelen, A.H., Leveque, L., Destombe, C. & Valer, M., 2011. Spatial and temporal patterns of recovery of low intertidal Laminaria digitata after experimental spring and autumn removal. Cahiers De Biologie Marine, 52 (4), 441-453.

  25. Erwin, D.G., Picton, B.E., Connor, D.W., Howson, C.M., Gilleece, P. & Bogues, M.J., 1990. Inshore Marine Life of Northern Ireland. Report of a survey carried out by the diving team of the Botany and Zoology Department of the Ulster Museum in fulfilment of a contract with Conservation Branch of the Department of the Environment (N.I.)., Ulster Museum, Belfast: HMSO.

  26. Farrell, P. & Fletcher, R., 2006. An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). Journal of Experimental Marine Biology and Ecology, 334 (2), 236-243.

  27. Fletcher, R.L., 1996. The occurrence of 'green tides' - a review. In Marine Benthic Vegetation. Recent changes and the Effects of Eutrophication (ed. W. Schramm & P.H. Nienhuis). Berlin Heidelberg: Springer-Verlag. [Ecological Studies, vol. 123].

  28. Fredriksen, S., Sjøtun, K., Lein, T.E. & Rueness, J., 1995. Spore dispersal in Laminaria hyperborea (Laminariales, Phaeophyceae). Sarsia, 80 (1), 47-53.

  29. Frieder, C., Nam, S., Martz, T. & Levin, L., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9 (10), 3917-3930.

  30. Gommez, J.L.C. & Miguez-Rodriguez, L.J., 1999. Effects of oil pollution on skeleton and tissues of Echinus esculentus L. 1758 (Echinodermata, Echinoidea) in a population of A Coruna Bay, Galicia, Spain. In Echinoderm Research 1998. Proceedings of the Fifth European Conference on Echinoderms, Milan, 7-12 September 1998, (ed. M.D.C. Carnevali & F. Bonasoro) pp. 439-447. Rotterdam: A.A. Balkema.

  31. Gordillo, F.J.L., Dring, M.J. & Savidge, G., 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Marine Ecology Progress Series, 234, 111-116.

  32. Gorman, D., Bajjouk, T., Populus, J., Vasquez, M. & Ehrhold, A., 2013. Modeling kelp forest distribution and biomass along temperate rocky coastlines. Marine Biology, 160 (2), 309-325.

  33. Grandy, N., 1984. The effects of oil and dispersants on subtidal red algae. Ph.D. Thesis. University of Liverpool.

  34. Hammer, L., 1972. Anaerobiosis in marine algae and marine phanerograms. In Proceedings of the Seventh International Seaweed Symposium, Sapporo, Japan, August 8-12, 1971 (ed. K. Nisizawa, S. Arasaki, Chihara, M., Hirose, H., Nakamura V., Tsuchiya, Y.), pp. 414-419. Tokyo: Tokyo University Press.

  35. Harkin, E., 1981. Fluctuations in epiphyte biomass following Laminaria hyperborea canopy removal. In Proceedings of the Xth International Seaweed Symposium, Gø teborg, 11-15 August 1980 (ed. T. Levring), pp.303-308. Berlin: Walter de Gruyter.

  36. Hayward, P.J. 1988. Animals on seaweed. Richmond, Surrey: Richmond Publishing Co. Ltd. [Naturalists Handbooks 9].

  37. Heiser, S., Hall-Spencer, J.M. & Hiscock, K., 2014. Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodiversity Records, 7, e93.

  38. Hiscock, K. & Mitchell, R., 1980. The Description and Classification of Sublittoral Epibenthic Ecosystems. In The Shore Environment, Vol. 2, Ecosystems, (ed. J.H. Price, D.E.G. Irvine, & W.F. Farnham), 323-370. London and New York: Academic Press. [Systematics Association Special Volume no. 17(b)].

  39. Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.

  40. Hopkin, R. & Kain, J.M., 1978. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuarine and Coastal Marine Science, 7, 531-553.

  41. JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. JNCC: JNCC. 2015(20/05/2015). jncc.defra.gov.uk/MarineHabitatClassification

  42. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

  43. Jones, C.G., Lawton, J.H. & Shackak, M., 1994. Organisms as ecosystem engineers. Oikos, 69, 373-386.

  44. Jones, D.J., 1971. Ecological studies on macro-invertebrate communities associated with polluted kelp forest in the North Sea. Helgolander Wissenschaftliche Meersuntersuchungen, 22, 417-431.

  45. Jones, L.A., Hiscock, K. & Connor, D.W., 2000. Marine habitat reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs. Joint Nature Conservation Committee, Peterborough. (UK Marine SACs Project report.). Available from: http://www.ukmarinesac.org.uk/pdfs/marine-habitats-review.pdf

  46. Jones, N.S. & Kain, J.M., 1967. Subtidal algal recolonisation following removal of Echinus. Helgolander Wissenschaftliche Meeresuntersuchungen, 15, 460-466.

  47. Kain, J.M., 1964. Aspects of the biology of Laminaria hyperborea III. Survival and growth of gametophytes. Journal of the Marine Biological Association of the United Kingdom, 44 (2), 415-433.

  48. Kain, J.M. & Svendsen, P., 1969. A note on the behaviour of Patina pellucida in Britain and Norway. Sarsia, 38, 25-30.

  49. Kain, J.M., 1971a. Synopsis of biological data on Laminaria hyperborea. FAO Fisheries Synopsis, no. 87.

  50. Kain, J.M., 1975a. Algal recolonization of some cleared subtidal areas. Journal of Ecology, 63, 739-765.

  51. Kain, J.M., 1979. A view of the genus Laminaria. Oceanography and Marine Biology: an Annual Review, 17, 101-161.

  52. Kain, J.M., 1987. Photoperiod and temperature as triggers in the seasonality of Delesseria sanguinea. Helgolander Meeresuntersuchungen, 41, 355-370.

  53. Kain, J.M., & Norton, T.A., 1990. Marine Ecology. In Biology of the Red Algae, (ed. K.M. Cole & Sheath, R.G.). Cambridge: Cambridge University Press.

  54. Kain, J.M., Drew, E.A. & Jupp, B.P., 1975. Light and the ecology of Laminaria hyperborea II. In Proceedings of the Sixteenth Symposium of the British Ecological Society, 26-28 March 1974. Light as an Ecological Factor: II (ed. G.C. Evans, R. Bainbridge & O. Rackham), pp. 63-92. Oxford: Blackwell Scientific Publications.

  55. Karsten, U., 2007. Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research, 55 (4), 257-262.

  56. Kinne, O., 1977. International Helgoland Symposium "Ecosystem research": summary, conclusions and closing. Helgoländer Wissenschaftliche Meeresuntersuchungen, 30(1-4), 709-727.

  57. Kitching, J., 1941. Studies in sublittoral ecology III. Laminaria forest on the west coast of Scotland; a study of zonation in relation to wave action and illumination. The Biological Bulletin, 80 (3), 324-337

  58. Kregting, L., Blight, A., Elsäßer, B. & Savidge, G., 2013. The influence of water motion on the growth rate of the kelp Laminaria hyperborea. Journal of Experimental Marine Biology and Ecology, 448, 337-345.

  59. Kruuk, H., Wansink, D. & Moorhouse, A., 1990. Feeding patches and diving success of otters, Lutra lutra, in Shetland. Oikos, 57, 68-72.

  60. Lang, C. & Mann, K., 1976. Changes in sea urchin populations after the destruction of kelp beds. Marine Biology, 36 (4), 321-326.

  61. Lein, T.E, Sjotun, K. & Wakili, S., 1991. Mass - occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the south western coast of Norway Sarsia, 76, 187-193.

  62. Leinaas, H.P. & Christie, H., 1996. Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia, 105(4), 524-536.

  63. Lobban, C.S. & Harrison, P.J., 1997. Seaweed ecology and physiology. Cambridge: Cambridge University Press.

  64. Lüning, K., 1990. Seaweeds: their environment, biogeography, and ecophysiology: John Wiley & Sons.

  65. Mann, K.H., 1982. Kelp, sea urchins, and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970-1980. Netherlands Journal of Sea Research, 16, 414-423.

  66. MarLIN, 2015. MarLIN (Marine Life Network). (13-10-2015). http://www.marlin.ac.uk

  67. Miller III, H.L., Neale, P.J. & Dunton, K.H., 2009. Biological weighting functions for UV inhibtion of photosynthesis in the kelp Laminaria hyperborea (Phaeophyceae) 1. Journal of Phycology, 45 (3), 571-584.

  68. Moore, P.G., 1973a. The kelp fauna of north east Britain I. Function of the physical environment. Journal of Experimental Marine Biology and Ecology, 13, 97-125.

  69. Moore, P.G., 1973b. The kelp fauna of north east Britain. II. Multivariate classification: turbidity as an ecological factor. Journal of Experimental Marine Biology and Ecology, 13, 127-163.

  70. Moore, P.G., 1978. Turbidity and kelp holdfast Amphipoda. I. Wales and S.W. England. Journal of Experimental Marine Biology and Ecology, 32, 53-96.

  71. Moore, P.G., 1985. Levels of heterogeneity and the amphipod fauna of kelp holdfasts. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc. (ed. P.G. Moore & R. Seed), 274-289. London: Hodder & Stoughton Ltd.

  72. NBN, 2015. National Biodiversity Network 2015(20/05/2015). https://data.nbn.org.uk/

  73. Nichols, D., 1981. The Cornish Sea-urchin Fishery. Cornish Studies, 9, 5-18.

  74. Norderhaug, K., 2004. Use of red algae as hosts by kelp-associated amphipods. Marine Biology, 144 (2), 225-230.

  75. Norderhaug, K.M. & Christie, H.C., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research, 5 (6), 515-528.

  76. Norderhaug, K.M., Christie, H. & Fredriksen, S., 2007. Is habitat size an important factor for faunal abundances on kelp (Laminaria hyperborea)? Journal of Sea Research, 58 (2), 120-124.

  77. Nordheim, van, H., Andersen, O.N. & Thissen, J., 1996. Red lists of Biotopes, Flora and Fauna of the Trilateral Wadden Sea area, 1995. Helgolander Meeresuntersuchungen, 50 (Suppl.), 1-136.

  78. Norton, T.A., 1992. Dispersal by macroalgae. British Phycological Journal, 27, 293-301.

  79. Norton, T.A., Hiscock, K. & Kitching, J.A., 1977. The Ecology of Lough Ine XX. The Laminaria forest at Carrigathorna. Journal of Ecology, 65, 919-941.

  80. Pedersen, M.F., Nejrup, L.B., Fredriksen, S., Christie, H. & Norderhaug, K.M., 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Marine Ecology Progress Series, 451, 45-60.

  81. Penfold, R., Hughson, S., & Boyle, N., 1996. The potential for a sea urchin fishery in Shetland. http://www.nafc.ac.uk/publish/note5/note5.htm, 2000-04-14

  82. Philippart, C.J., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz, T., O'Sullivan, G. & Reid, P.C., 2011. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400 (1), 52-69.

  83. Raffaelli, D. & Hawkins, S., 1999. Intertidal Ecology 2nd edn.. London: Kluwer Academic Publishers.

  84. Read, P.A., Anderson, K.J., Matthews, J.E., Watson, P.G., Halliday, M.C. & Shiells, G.M., 1983. Effects of pollution on the benthos of the Firth of Forth. Marine Pollution Bulletin, 14, 12-16.

  85. Rinde, E. & Sjøtun, K., 2005. Demographic variation in the kelp Laminaria hyperborea along a latitudinal gradient. Marine Biology, 146 (6), 1051-1062.

  86. Rostron, D.M. & Bunker, F. St P.D., 1997. An assessment of sublittoral epibenthic communities and species following the Sea Empress oil spill. A report to the Countryside Council for Wales from Marine Seen & Sub-Sea Survey., Countryside Council for Wales, Bangor, CCW Sea Empress Contact Science, no. 177.

  87. Różycki, O. & Gruszxyński, M., 1991. On the infauna of an Arctic estuary Nottinghambukta, Svalbard. Polish Polar Research, 12 (3), 433-444.

  88. Scheibling, R.E. & Gagnon, P., 2006. Competitive interactions between the invasive green alga Codium fragile ssp tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Marine Ecology Progress Series, 325, 1-14.

  89. Schiel, D.R. & Foster, M.S., 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology: an Annual Review, 24, 265-307.

  90. SEEEC (Sea Empress Environmental Evaluation Committee), 1998. The environmental impact of the Sea Empress oil spill. Final Report of the Sea Empress Environmental Evaluation Committee, 135 pp., London: HMSO.

  91. Sheppard, C.R.C., Bellamy, D.J. & Sheppard, A.L.S., 1980. Study of the fauna inhabiting the holdfasts of Laminaria hyperborea (Gunn.) Fosl. along some environmental and geographical gradients. Marine Environmental Research, 4, 25-51.

  92. Sivertsen, K., 1997. Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2872-2887.

  93. Sjøtun, K., Christie, H. & Helge Fosså, J., 2006. The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (Laminaria hyperborea). Marine Biology Research, 2 (1), 24-32.

  94. Sjøtun, K. & Schoschina, E.V., 2002. Gametophytic development of Laminaria spp. (Laminariales, Phaeophyta) at low temperatures. Phycologia, 41, 147-152.

  95. Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. & Hawkins, S.J., 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and evolution, 3 (11), 4016-4038.

  96. Smale, D.A., Wernberg, T., Yunnie, A.L. & Vance, T., 2014. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine ecology.

  97. Smith, B.D., 1985. Recovery following experimental harvesting of Laminaria longicruris and Laminaria digitata in Southwestern Nova Scotia. Helgolander Meeresuntersuchungen, 39(1), 83-101.

  98. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  99. Somerfield, P.J. & Warwick, R.M., 1999. Appraisal of environmental impact and recovery using Laminaria holdfast faunas. Sea Empress, Environmental Evaluation Committee., Countryside Council for Wales, Bangor, CCW Sea Empress Contract Science, Report no. 321.

  100. Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J., 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental conservation, 29 (04), 436-459.

  101. Steneck, R.S., Vavrinec, J. & Leland, A.V., 2004. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems, 7 (4), 323-332.

  102. Thompson, G.A. & Schiel, D.R., 2012. Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Marine Ecology, Progress Series, 468, 95-105.

  103. Thompson, R.S. & Burrows, E.M., 1984. The toxicity of copper, zinc and mercury to the brown macroalga Laminaria saccharina. In Ecotoxicological testing for the marine environment (ed. G. Persoone, E. Jaspers, & C. Claus), Vol. 2, pp. 259-269. Ghent: Laboratory for biological research in aquatic pollution, State University of Ghent.

  104. Vadas, R.L. & Elner, R.W., 1992. Plant-animal interactions in the north-west Atlantic. In Plant-animal interactions in the marine benthos, (ed. D.M. John, S.J. Hawkins & J.H. Price), 33-60. Oxford: Clarendon Press. [Systematics Association Special Volume, no. 46].

  105. Vadas, R.L., Johnson, S. & Norton, T.A., 1992. Recruitment and mortality of early post-settlement stages of benthic algae. British Phycological Journal, 27, 331-351.

  106. Van den Hoek, C., 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biological Journal of the Linnean Society, 18, 81-144.

  107. Van den Hoek, C., Mann, D.G. & Jahns, H.M., 1995. Algae: an introduction to phycology: Cambridge University Press.

  108. Vost, L.M., 1983. The influence of Echinus esculentus grazing on subtidal algal communities. British Phycological Journal, 18, 211.

  109. Whittick, A., 1983. Spatial and temporal distributions of dominant epiphytes on the stipes of Laminaria hyperborea (Gunn.) Fosl. (Phaeophyta: Laminariales) in S.E. Scotland. Journal of Experimental Marine Biology and Ecology, 73, 1-10.

  110. WoRMS, 2015. World Register of Marine Species. (11/04/2007). http://www.marinespecies.org

  111. Wotton, D.M., O'Brien, C., Stuart, M.D. & Fergus, D.J., 2004. Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, 49 (9), 844-849.

  112. Yarish, C., Penniman, C.A. & Egan, B., 1990. Growth and reproductibe responses of Laminaria longicruris (Laminariales, Phaeophyta) to nutrient enrichment. Hydrobiologia, 204, 505-511.

Citation

This review can be cited as:

Stamp, T.E., 2015. [Saccharina latissima] with foliose red seaweeds and ascidians on sheltered tide-swept infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/habitat/detail/1038

Last Updated: 12/10/2015