Barren littoral coarse sand

10-11-2004
Researched byDr Heidi Tillin & Georgina Budd Refereed byDr John Fish
EUNIS CodeA2.221 EUNIS NameBarren littoral coarse sand

Summary

UK and Ireland classification

EUNIS 2008A2.221Barren littoral coarse sand
EUNIS 2006A2.221Barren littoral coarse sand
JNCC 2004LS.LSa.MoSa.BarSaBarren littoral coarse sand
1997 BiotopeLS.LGS.S.BarSndBarren coarse sand shores

Description

Freely-draining coarse sandy beaches, particularly on the upper shore, which lack a macrofaunal community due to their continual mobility. Trial excavations are unlikely to reveal any macrofauna in these typically steep beaches on exposed coasts. Burrowing amphipods Bathyporeia spp. or Pontocrates spp. and the isopod Eurydice pulchra may be found in extremely low abundances, but if present in any quantity should be classed as LGS.AEur. Other species that may be found in low abundance may be left behind by the ebbing tide. (Information taken from the Marine Biotope Classification for Britain and Ireland, Version 97.06: Connor et al., 1997a, b).

Recorded distribution in Britain and Ireland

LGS.BarSnd is a common biotope that occurs on coasts of Britain and Ireland, where the hydrodynamic regime and underlying topography and geology allow accumulation of sandy substrata that is subject to redistribution by tide and currents. The biotope is found particularly at the entrance of the coastal inlets of the south west and is notably absent in the south east of England.

Depth range

Lower shore, Mid shore, Strandline, Upper shore

Additional information

The barren shingle/gravel shore biotope (LGS.BarSh) is also represented by this review. In Britain and Ireland the status of the LGS.BarSh biotope is listed as 'uncommon' (Connor et al., 1997b ) and it is differentiated from the LGS.BarSnd biotope solely on the basis of particle size (typically from 4 - 256 mm). LGS.BarSh shores have little associated fine sediment and owing to the mobility of the substratum the biotope does not support macrofauna. Furthermore, trial excavations are unlikely to reveal macroscopic infauna. Any species that are found, such as the occasional amphipod or small polychaete have probably been left stranded by the ebbing tide.

Listed By

Further information sources

Search on:

JNCC

Habitat review

Ecology

Ecological and functional relationships

Community and population patterns of distribution and abundance in exposed sandy beaches have been assumed to be primarily controlled by specific species responses to the hydrodynamic climate and sediment characteristics which are intimately linked, a scenario where biological interactions do not appear to play a critical role (McLachlan, 1983). Furthermore, there is a conspicuous lack of information concerning the effects of biotic factors e.g. competition, on the structure and distribution of sandy beach populations, as it is likely that detection of intra- and interspecific competition in such a dynamic environment is very complex (Branch, 1984). However, competition for space and food is unlikely to be a limiting feature in this high energy environment, as the faunal population of mobile amphipods and isopods is extremely small and they swim in the water column at high tide in search of food, only sheltering temporarily in the sediment at low tide (Peterson, 1991). Consequently, no single species can be considered a keystone species whose activity is essential to the structure of the community.

Seasonal and longer term change

The LGS.BarSnd and LGS.BarSh biotopes will be sensitive to seasonal changes in the hydrodynamic regime, and as a result of increased wave action and water movement, sedimentary disturbance is likely.

Habitat structure and complexity

  • The hydrodynamic regime (tides, waves and residual currents) together with the underlying physiography and geology create the conditions for a given substrata to develop.
  • Grain size, shape and degree of sorting are most important in determining porosity and permeability which influence drainage. Drainage is critical in determining the moisture content, oxygen saturation, organic content and the depth of the reducing layer (if present). Permeability increases with coarse substrate and better sorting, and drainage also increases on steeper beaches. Consequently, the sediment diameter of the coarse sand of this biotope (0.25 - 2 mm diameter) ensures that it is freely-draining.
  • In the LGS.BarSnd biotope a macrophyte community is absent owing to the lack of stable substrata. However, in the LGS.BarSh biotope a temporary covering of the green algae Ulva may develop (via attachment to larger pebbles and cobbles) during the period of relative stability in the summer.

Productivity

Macroalgal productivity within the LGS.BarSnd biotope is likely to be very low. Macroalgae (if present) occur in extremely low abundance and is typically absent owing to the lack of a stable substratum. Therefore the benthic microalgae (microphytobenthos e.g. diatoms, flagellates and euglenoides) are probably the most significant primary producers of the depositing shore and are confined to the interstices of the illuminated sediment surface. The phytoplankton of the sea also becomes a temporary part of the sandy beach ecosystem when the tide is in and primary producers from other environments may appear on the shore. These are invariably macroalgae that have become detached from rocky substrata and have been washed up. Eventually they decompose on the beach and contribute to the energy budget of the shore system. Consequently, most productivity on the mobile sandy shore may be categorized as secondary, derived from detritus and allochthonous organic matter. In the LSG.BarSh biotope also represented by this review, a temporary covering of the green algae Ulva sp. may develop during periods of relative stability during the summer and consequently contribute to the productivity of the biotope.

Recruitment processes

The burrowing amphipods Bathyporeia pelagica and Pontocrates arenarius and the isopod Eurydice pulchra may occur in the LGS.BarSnd and LGS.BarSh biotopes at extremely low abundance. If these species are found in any greater abundance the biotope should be classed as LGS.AEur. However, the recruitment processes of these species may be summarized as follows:
  • Eurydice pulchra breeds between April and August once sea temperatures rise above 10°C, and the highest number of juveniles occurs around the periods of maximum summer temperatures. Males and females pair during their nightly swimming on falling spring tides and mating occurs in the sand once the female has completed her moult. Incubation of the embryos in the brood pouch takes some 7-8 weeks and after release of the young the female returns to the non-breeding condition (J. Fish, pers. comm.). Juvenile Eurydice pulchra first appear in July, the minimum length being 1.7 mm (J. Fish, pers. comm.). Although the first juveniles may reach sexual maturity before the onset of winter, they begin breeding in the following spring and die during their second autumn after a total life span of approximately 15 months. Mid-summer juveniles also mature to breed the following summer and only reached 12 months of age before dying. In contrast, the last broods appearing as late as October, do not mature until late the following summer. They breed in their second October and then over-winter for a second time, producing a second brood in the spring before dying of at 18-20 months old (Fish, 1970; Jones, 1970; Hayward, 1994).
  • Bathyporeia pelagica may breed throughout the year, but the greatest reproductive activity occurs during spring and late summer/autumn. Males and females pair whilst swimming and mate on the night-time ebb tides following each new and full moon. Development of an egg to the stage when it is released as a juvenile takes just 15 days to complete. The over-wintering population of Bathyporeia pelagica consists largely of juvenile animals. These mature in spring to form the majority of the next breeding population and eventually die in June and July, after a life span of about one year (Fish & Preece, 1970). Bathyporeia pilosa has a similar recruitment cycle.
  • In Pontocrates arenarius from Irish Sea coasts, breeding has been recorded throughout the year (Fish & Fish, 1996).)

Time for community to reach maturity

Beaches are dynamic environments, even when they are neither gaining nor losing sediment they are subject to short-term changes in response to wave regimes and weather conditions. Beach profiles show alteration as beach-face sands are re-cycled and decline as the component sand grains are reduced in calibre by attrition and weathering. In some locations these trends are marked by accretion as new sandy sediment arrives and the coastline advances. Whilst in other locations there is a loss of sandy sediment, marked by diminishing beach volumes and coastline retreat (Bird, 1983). As a consequence of the dynamic nature of the habitat the faunal component of the biotope is very sparse and low in species richness. Therefore, the community might be considered 'mature' only a few days or weeks after the last spring tide or drying event, as the mobile species migrate into the biotope from adjacent areas carried in as surf plankton.

Additional information

No text entered.

Preferences & Distribution

Recorded distribution in Britain and IrelandLGS.BarSnd is a common biotope that occurs on coasts of Britain and Ireland, where the hydrodynamic regime and underlying topography and geology allow accumulation of sandy substrata that is subject to redistribution by tide and currents. The biotope is found particularly at the entrance of the coastal inlets of the south west and is notably absent in the south east of England.

Habitat preferences

Depth Range Lower shore, Mid shore, Strandline, Upper shore
Water clarity preferences
Limiting Nutrients Field unresearched
Salinity Full (30-40 psu)
Physiographic Open coast
Biological Zone Eulittoral, Supralittoral
Substratum Coarse clean sand, Medium clean sand
Tidal
Wave Exposed, Moderately exposed
Other preferences

Additional Information

The species that occur are typical of unconsolidated coarse sediments that are re-mobilized as a result of strong tidal streams or wave action.

Species composition

Species found especially in this biotope

    Rare or scarce species associated with this biotope

    -

    Additional information

    No text entered.

    Sensitivity reviewHow is sensitivity assessed?

    Sensitivity characteristics of the habitat and relevant characteristic species

    The biotope description is taken from JNCC (2015). Coarse sands drain rapidly and the lack of water and organic content, combined with the sediment mobility which results in high-levels of abrasion, means this biotope lacks a macrofaunal community. The sensitivity assessments are therefore based on the abiotic (non-living) habitat.  Occasionally, other species may be left behind in low abundance by the ebbing tide, these are not typically present in the biotope and sensitivity is not considered.

    Resilience and recovery rates of habitat

    This biotope is subject to high levels of abrasion resulting from sediment mobility. The species that are present (if any) are robust animals that can withstand some physical disturbance and/or recover rapidly, or migrate as adults into the biotope. The LS.LSa.MoSa.BarSa biotope is primarily identified by the type of the substratum rather than the biological community, which may be absent, or if present, occur in extremely low abundance. The mobile species that may be found in the LGS.BarSnd biotope occur throughout the littoral zone and are not dependent specifically on this biotope. Therefore the substratum type has been used primarily to indicate the sensitivity of this biotope and no species indicative of sensitivity were chosen.

    Resilience assessment. As this biotope is characterized by the absence, rather then the presence of species, recovery is assessed as 'High' for any level of impact. The biotope would be considered to be sensitive to pressures that allowed the establishment of a permanent, species rich biological assemblage as low abundances and low species richness are characteristic of the biotope.

    Hydrological Pressures

     ResistanceResilienceSensitivity
    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species resulting from sediment mobility and abrasion (JNCC, 2015), rather than the presence of typical species: changes in temperature will therefore not alter the biotope (based on the abiotic habitat). Resistance to an increase in temperature is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species resulting from sediment mobility and abrasion (JNCC, 2015), rather than the presence of typical species: changes in temperature will therefore not alter the biotope (based on the abiotic habitat). Resistance to a decrease in temperature is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species resulting from sediment mobility and abrasion (JNCC, 2015), rather than the presence of typical species: changes in salinity will therefore not alter the biotope (based on the abiotic habitat). Resistance to an increase in salinity is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: Low
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species resulting from sediment mobility and abrasion (JNCC, 2015), rather than the presence of typical species: changes in salinity will therefore not alter the biotope (based on the abiotic habitat). Resistance to a decrease in salinity is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: Low
    A: NR
    C: NR
    Q: High
    A: High
    C: High
    Q: Low
    A: Low
    C: Low

    Changes in water flow at the pressure benchmark are considered unlikely to lead to alterations in the biotope as wave exposure would still result in sediment mobility, preventing the establishment of a more species rich biotope.  Resistance is therefore assessed as ‘High’ and resilience as ‘High’ (by default) so that the biotope is considered to be ‘Not sensitive’.  A reduction in water flow (coupled with reduced wave exposure) exceeding the pressure benchmark, could reduce sediment mobility and this may allow the establishment of a biotope such as LS.LSa.MoSa.AmSco.Sco or LS.LSa.MoSa.AmSco.Eur where finer sands were deposited.

    Low High Low
    Q: Low
    A: NR
    C: NR
    Q: Low
    A: NR
    C: NR
    Q: Low
    A: Low
    C: Low

    This biotope occurs from the lower to upper shore and sediment mobility, rather than emergence, is a key factor preventing the establishment of a more species rich biotope.  An increase in the emergence period of this biotope would make it even more inhospitable to marine invertebrates. Where the biotope occurs in the supralittoral zone, a reduction in saline spray and splash may favour the colonization of terrestrial plants, which if able fully to establish will have a stabilising effect on the substratum. Consequently, this factor has the potential to alter the LGS.BarSnd biotope so that its starts to become another biotope. Similarly a decrease in emergence that led to this biotope becoming fully sublittoral would result in reclassification. The LGS.BarSnd biotope would not be recognized in either scenario and resistance has therefore been assessed as ‘Low’. On return to prior emergence regime sublittoral species that are intolerant of emergence and plants that may have colonized the substratum and which are intolerant to saline splash and spray will probably decline rapidly. Therefore resilience has been assessed as ‘High’. This biotope is therefore considered to have ‘Low’ sensitivity’ to changes in emergence. 

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is found on shores that are judged to be moderately exposed, exposed or very exposed to wave action (JNCC, 2015). The presence of this biotope across these three categories is considered to indicate (by proxy) that increases or decreases in wave exposure at the pressure benchmark are unlikely to lead to alterations to the biotope.  Resistance is therefore assessed as ‘High’ and resilience as ‘High’ (by default) so that the biotope is considered to be ‘Not sensitive’.  A reduction in wave exposure (exceeding the pressure benchmark), could reduce sediment mobility and this may allow the establishment of a biotope such as LS.LSa.MoSa.AmSco.Pon or LS.LSa.MoSa.AmSco.Eur where finer sands were deposited.

    Chemical Pressures

     ResistanceResilienceSensitivity
    Not relevant (NR) Not relevant (NR) Not sensitive
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not sensitive at the pressure benchmark that assumes compliance with all relevant environmental protection standards. As this biotope is characterized by the lack of species, exposure to contaminants will not result in significant impacts.

    Not relevant (NR) Not relevant (NR) Not sensitive
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not sensitive at the pressure benchmark that assumes compliance with all relevant environmental protection standards. As this biotope is characterized by the lack of species, exposure to contaminants will not result in significant impacts.

    Not relevant (NR) Not relevant (NR) Not sensitive
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not sensitive at the pressure benchmark that assumes compliance with all relevant environmental protection standards. As this biotope is characterized by the lack of species, exposure to contaminants will not result in significant impacts.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    High High Not sensitive
    Q: Low
    A: NR
    C: NR
    Q: High
    A: High
    C: High
    Q: Low
    A: Low
    C: Low

    As this biotope is characterized by the lack of species, de-oxygenation will not result in significant impacts. De-oxygenation is unlikely as this biotope is intertidal and exposure to air and tidal flushing is likely to recharge oxygen levels. Biotope resistance is therefore assessed as 'High', and resilience as 'High' (by default) and the biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: Low
    A: NR
    C: NR
    Q: High
    A: High
    C: High
    Q: Low
    A: Low
    C: Low

    As this biotope is characterized by the lack of species present due to sediment mobility, nutrient enrichment will not result in significant impacts. Biotope resistance is therefore assessed as 'High', and resilience as 'High' (by default) and the biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: Low
    A: NR
    C: NR
    Q: High
    A: High
    C: High
    Q: Low
    A: Low
    C: Low

    As this biotope is characterized by the lack of species, organic enrichment will not result in significant impacts. Organic deposits are likely to be removed rapidly by wave action although in periods of calm an organic deposit may be rapidly colonized by oligochaetes. Biotope resistance is assessed as 'High' as enrichment is likely to be very short-lived, and resilience as 'High' (by default), the biotope is considered to be 'Not sensitive'.

    Physical Pressures

     ResistanceResilienceSensitivity
    None Very Low High
    Q: High
    A: High
    C: High
    Q: High
    A: High
    C: High
    Q: High
    A: High
    C: High

    All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

    None Very Low High
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by coarse sands (JNCC, 2015). A change to a hard or artificial substratum would significantly alter the character of the biotope. The biotope is therefore considered to have 'No' resistance to this pressure (based on a change to a sediment habitat), recovery is assessed as 'Very low', as the change at the pressure benchmark is permanent. Biotope sensitivity is therefore assessed as 'High'.

    None Very Low High
    Q: High
    A: Medium
    C: Low
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    The benchmark for this pressure refers to a change in one Folk class.  The pressure benchmark originally developed by Tillin et al., (2010) used the modified Folk triangle developed by Long (2006) which simplified sediment types into four categories: mud and sandy mud, sand and muddy sand, mixed sediments and coarse sediments.  The change referred to is therefore a change in sediment classification rather than a change in the finer-scale original Folk categories (Folk, 1954).  The change in one Folk class is considered to relate to a change in classification to adjacent categories in the modified Folk triangle.  For coarse sands a change in one folk class may refer to a change to gravels, mixed sediments or muddy sands, sandy muds and muds. A change in sediment type would result in reclassification of the biotope (JNCC, 2015) and a change to mixed or fine sediments would likely result in the establishment of a species rich and more diverse community (depending on other habitat factors). Biotope resistance is therefore assessed as ‘None’ and resilience as ‘Very low’ as the change at the pressure benchmark is permanent. Sensitivity is therefore ‘High’.

    None High Medium
    Q: High
    A: Low
    C: NR
    Q: Low
    A: NR
    C: NR
    Q: Low
    A: Low
    C: Low

    The process of extraction will remove the abiotic habitat; therefore a resistance of ‘None’ is recorded. As the coarse sands are mobile where small areas are impacted infilling is likely to be rapid following sediment redistribution by wave action. For instance, at Village Bay on St Kilda, an island group far out into the Atlantic west of Britain, an expanse of sandy beach was removed offshore as a result of winter storms to reveal an underlying rocky shore (Scott, 1960). Yet in the following summer the beach was gradually replaced when wave action was less severe. In view of such observations, that many sandy beaches disappear in winter and reappear in spring, it is likely that recovery would occur in less than a year or six months.  As a result, resilience is assessed as ‘High’, and sensitivity as ‘Medium’.  Recovery where large volumes of sand are removed over wide areas may lead to slower recovery if sediments are not available and/or water transport is limited. 

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species through sediment mobility (JNCC, 2015), rather than the presence of typical species: abrasion will therefore not alter biotope character. The highly mobile species present occasionally in this biotope may only be found in extremely low abundance and are not specifically dependent on this biotope. Resistance to this pressure is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species through sediment mobility (JNCC, 2015), rather than the presence of typical species: abrasion will therefore not alter biotope character. The highly mobile species present occasionally in this biotope may only be found in extremely low abundance and are not specifically dependent on this biotope Resistance to this pressure is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope occurs in scoured habitats and it is likely, depending on local sediment supply, that the biotope is exposed to chronic or intermittent episodes of high-levels of suspended solids as local sediments are re-mobilised and transported. This biotope is characterized by the absence of species through sediment mobility (JNCC, 2015), rather than the presence of typical species: changes in suspended solids will therefore not alter the biotope. Resistance to an increase or decrease in suspended solids is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species through sediment mobility (JNCC, 2015), rather than the presence of typical species: the addition of a single deposit of fine sediments which will be removed by wave action will therefore not alter the biotope. Resistance to this pressure is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    High High Not sensitive
    Q: High
    A: Medium
    C: NR
    Q: High
    A: High
    C: High
    Q: High
    A: Medium
    C: Low

    This biotope is characterized by the absence of species through sediment mobility (JNCC, 2015), rather than the presence of typical species: the addition of a single deposit of fine sediments which will be removed by wave action will therefore not alter the biotope. Resistance to this pressure is therefore assessed as 'High' and resilience as ‘High’ (by default) and this biotope is considered to be 'Not sensitive'.

    Not Assessed (NA) Not Assessed (NA) Not assessed (NA)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not assessed,

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under surface abrasion.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    Not relevant.

    Biological Pressures

     ResistanceResilienceSensitivity
    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    This biotope is not characterized by any typical species, those that are present, such as Bathyporeia spp.  are not translocated and this pressure is therefore considered 'Not relevant'.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    The high levels of abrasion resulting from movement of coarse sands and the subsequent sediment instability will limit establishment of all but the most highly scour resistant invasive non-indigenous species (INIS) and no direct evidence was found for effects of INIS on this biotope.  The low levels of water and organic matter retained by this biotope, are considered to additionally inhibit permanent colonization by invasive species.

    Sensitivity assessment. Overall, there is no evidence of this biotope being adversely affected by non-native species. Resistance is therefore assessed as 'High', and resilience as 'High' (by default), and the biotope is considered to be 'Not sensitive'.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    As this biotope is characterized by the absence of a biological assemblage apart from occasional and ephemeral presence of Bathyporeia spp. this pressure is considered to be 'Not relevant'.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    As this biotope is characterized by the absence of a biological assemblage apart from occasional and ephemeral presence of Bathyporeia spp. this pressure is considered to be 'Not relevant'.

    Not relevant (NR) Not relevant (NR) Not relevant (NR)
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR
    Q: NR
    A: NR
    C: NR

    As this biotope is characterized by the absence of a biological assemblage apart from occasional and ephemeral presence of Bathyporeia spp. this pressure is considered to be 'Not relevant'.

    Importance review

    Policy/Legislation

    Habitats Directive Annex 1Mudflats and sandflats not covered by seawater at low tide

    Exploitation

    The biotope is not targeted for commercial exploitation, but upper shore facies are likely to be used for recreational purposes in popular tourist areas.

    Additional information

    -

    Bibliography

    1. Bird, E.C.F., 1983. Factors influencing beach and accretion: a global review. In Sandy beaches as ecosystems(ed. A. McLachlan & T. Erasmus), pp. 709-717. The Hague: Dr W. Junk Publishers.
    2. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. Joint Nature Conservation Committee, Peterborough. www.jncc.gov.uk/MarineHabitatClassification,
    3. Connor, D.W., Brazier, D.P., Hill, T.O., & Northen, K.O., 1997b. Marine biotope classification for Britain and Ireland. Vol. 1. Littoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 229, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report No. 230, Version 97.06.
    4. Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

    5. Fish, J.D. & Preece, G.S., 1970. The annual reproductive patterns of Bathyporeia pilosa and Bathyporeia pelagica (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom, 50, 475-488.
    6. Fish, S., 1970. The biology of Eurydice pulchra (Crustacea: Isopoda). Journal of the Marine Biological Association of the United Kingdom, 50, 753-768.
    7. Hayward, P.J. 1994. Animals of sandy shores. Slough, England: The Richmond Publishing Co. Ltd. [Naturalists' Handbook 21.]
    8. JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. JNCC: JNCC. 2015(20/05/2015). jncc.defra.gov.uk/MarineHabitatClassification
    9. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid,
    10. Jones, D.A., 1970. Population densities and breeding in Eurydice pulchra and Eurydice affinis in Britain. Journal of the Marine Biological Association of the United Kingdom, 50, 635-655.
    11. Long, D., 2006. BGS detailed explanation of seabed sediment modified Folk classification. Available from: http://www.emodnet-seabedhabitats.eu/PDF/GMHM3_Detailed_explanation_of_seabed_sediment_classification.pdf
    12. McLachlan, A., 1983. Sandy beach ecology - a review. In Sandy beaches as ecosystems (ed. A. McLachlan & T. Erasmus), pp.321-381. The Hague: Dr W. Junk Publishers.
    13. McLachlan, A., 1983. Sandy beach ecology - a review. In Sandy beaches as ecosystems (ed. A. McLachlan & T. Erasmus), pp.321-381. The Hague: Dr W. Junk Publishers.
    14. Peterson, C.H., 1991. Intertidal zonation of marine invertebrates in sand and mud. American Scientist, 79, 236-249.
    15. Scott, A., 1960. The fauna of the sandy beach, Village Bay, St. Kilda. A dynamical relationship. Oikos, 11, 153-160.

    Citation

    This review can be cited as:

    Tillin, H.M. & Budd, G., 2016. Barren littoral coarse sand. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/habitat/detail/16

    Last Updated: 23/03/2016