MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

Coralline crusts in surge gullies and scoured infralittoral rock

03-04-2018

Summary

UK and Ireland classification

UK and Ireland classification

Description

Scoured rock in wave-surged caves, tunnels or gullies often looks rather bare, and may be characterized by a limited scour-tolerant fauna of Balanus crenatus and/or Spirobranchus (Pomatoceros) triqueter with spirorbid polychaetes. In areas where sufficient light is available and scour is severe, encrusting coralline algae and non-calcareous crusts cover the rock surface, giving a pink appearance. This biotope most commonly occurs at the bottom of walls in caves and gullies, where abrasion by cobbles and stones is severe, especially during winter. In some gullies, extreme scouring and abrasion produces a narrow band of bare coralline algal crust at the very bottom of the walls, with a band of Spirobranchus (Pomatoceros) triqueter and/or Balanus crenatus immediately above. Other scour-tolerant species, such as encrusting bryozoans may also be common. Crevices and cracks in the rock provide a refuge for sponge crusts such as Halichondria panicea and occasional anemones Urticina felina and Sagartia elegans. More mobile fauna is usually restricted to the echinoderms Asterias rubens and Echinus esculentus as well as the crab Cancer pagurus. Two variants have been identified: Wave-surged bedrock with coralline crust, Balanus crenatus and Spirobranchus triqueter (CC.BalSpi) and coralline crusts on mobile boulders in severely scoured caves (CC.Mo) (JNCC, 2015).

 

Depth range

0-5 m, 5-10 m, 10-20 m

Additional information

-

Listed By

Further information sources

Search on:

Sensitivity reviewHow is sensitivity assessed?

Explanation

-

Species indicative of sensitivity

-

Physical Pressures

No sensitivity data available

Chemical Pressures

No sensitivity data available

Biological Pressures

No sensitivity data available

Additional information

-

Bibliography

  1. Adey, W.H. & Adey, P.J., 1973. Studies on the biosystematics and ecology of the epilithic crustose corallinacea of the British Isles. British Phycological Journal, 8, 343-407.

  2. Airoldi, L., 2003. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology: An Annual Review, 41,161-236

  3. Airoldi, L., 2000. Responses of algae with different life histories to temporal and spatial variability of disturbance in subtidal reefs. Marine Ecology Progress Series, 195 (8), 81-92.

  4. Andersson, M.H., Berggren, M., Wilhelmsson, D. & Öhman, M.C., 2009. Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment: a field experiment. Helgoland Marine Research, 63, 249-260.

  5. Arévalo, R., Pinedo, S. & Ballesteros, E., 2007. Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Marine Pollution Bulletin, 55 (1), 104-113.

  6. Balata, D., Piazzi, L., & Cinelli, F., 2007. Increase of sedimentation in a subtidal system: effects on the structure and diversity of macroalgal assemblages. Journal of Experimental Marine Biology and Ecology351(1), 73-82.

  7. Barnes, H. & Bagenal, T.B., 1951. Observations on Nephrops norvegicus and an epizoic population of Balanus crenatus. Journal of the Marine Biological Association of the United Kingdom, 30, 369-380.

  8. Barnes, H. & Barnes, M., 1974. The responses during development of the embryos of some common cirripedes to wide changes in salinity. Journal of Experimental Marine Biology and Ecology, 15 (2), 197-202.

  9. Barnes, H. & Barnes, M., 1968. Egg numbers, metabolic efficiency and egg production and fecundity; local and regional variations in a number of common cirripedes. Journal of Experimental Marine Biology and Ecology, 2, 135-153.

  10. Barnes, H. & Powell, H.T., 1953. The growth of Balanus balanoides and B. crenatus under varying conditions of submersion. Journal of the Marine Biological Association of the United Kingdom, 32, 107-127.

  11. Barnes, H., Finlayson, D.M. & Piatigorsky, J., 1963. The effect of desiccation and anaerobic conditions on the behaviour, survival and general metabolism of three common cirripedes. Journal of Animal Ecology, 32, 233-252.

  12. Boney, A.D., 1971. Sub-lethal effects of mercury on marine algae. Marine Pollution Bulletin, 2, 69-71.

  13. Borja, A., Franco, J. & Perez, V., 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 40 (12), 1100-1114.

  14. Bradshaw, C., Veale, L.O., Hill, A.S. & Brand, A.R., 2002. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: a re-analysis of an historical dataset. Journal of Sea Research, 47, 161-184.

  15. Brault, S. & Bourget, E., 1985. Structural changes in an estuarine subtidal epibenthic community: biotic and physical causes. Marine Ecology Progress Series, 21, 63-73.

  16. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  17. Cadée, G.C., 2007. Balanuliths: Free-living clusters of the barnacle Balanus crenatus. Palaios, 22, 680-681.

  18. Campbell, D.A. & Kelly, M.S., 2002. Settlement of Pomatoceros triqueter (L.) in two Scottish lochs, and factors determining its abundance on mussels grown in suspended culture. Journal of Shellfish Research, 21, 519-528.

  19. Castric-Fey, A., 1983. Recruitment, growth and longevity of Pomatoceros triqueter and Pomatoceros lamarckii (Polychaeta, Serpulidae) on experimental panels in the Concarneau area, South Brittany. Annales de l'Institut Oceanographique, Paris, 59, 69-91.

  20. Chamberlain, Y.M., 1996. Lithophylloid Corallinaceae (Rhodophycota) of the genera Lithophyllum and Titausderma from southern Africa. Phycologia, 35, 204-221.

  21. Cole, S., Codling, I.D., Parr, W., Zabel, T., 1999. Guidelines for managing water quality impacts within UK European marine sites [On-line]. UK Marine SACs Project. [Cited 26/01/16]. Available from: http://www.ukmarinesac.org.uk/pdfs/water_quality.pdf

  22. Colhart, B.J., & Johanssen, H.W., 1973. Growth rates of Corallina officinalis (Rhodophyta) at different temperatures. Marine Biology, 18, 46-49.

  23. Collie, J.S., Hermsen, J.M., Valentine, P.C. & Almeida, F.P., 2005. Effects of fishing on gravel habitats: assessment and recovery of benthic megafauna on Georges Bank.  American Fisheries Society Symposium, American Fisheries Society, 41, pp. 325.

  24. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. Joint Nature Conservation Committee, Peterborough. www.jncc.gov.uk/MarineHabitatClassification.

  25. Constantino, R., Gaspar, M., Tata-Regala, J., Carvalho, S., Cúrdia, J., Drago, T., Taborda, R. & Monteiro, C., 2009. Clam dredging effects and subsequent recovery of benthic communities at different depth ranges. Marine Environmental Research, 67, 89-99.

  26. Cotter, E., O'Riordan, R.M & Myers, A.A. 2003. Recruitment patterns of serpulids (Annelida: Polychaeta) in Bantry Bay, Ireland. Journal of the Marine Biological Association of the United Kingdom, 83, 41-48.

  27. Crisp, D.J. (ed.), 1964. The effects of the severe winter of 1962-63 on marine life in Britain. Journal of Animal Ecology, 33, 165-210.

  28. Crisp, D.J., 1964b. Mortalities in marine life in North Wales during the winter of 1962-63. Journal of Animal Ecology, 33, 190-197.

  29. Crisp, D.J., 1965. The ecology of marine fouling. In: Ecology and the Industrial Society, 5th Symposium of the British Ecological Society, 99-117 (ed. G.T. Goodman, R.W. Edwards & J.M. Lambert).

  30. Crump, R.G., Morley, H.S., & Williams, A.D., 1999. West Angle Bay, a case study. Littoral monitoring of permanent quadrats before and after the Sea Empress oil spill. Field Studies, 9, 497-511.

  31. Davenport, J., 1976. A comparative study of the behaviour of some balanomorph barnacles exposed to fluctuating sea water concentrations. Journal of the Marine Biological Association of the United Kingdom, 5, pp.889-907.

  32. Davenport, J. & Davenport, J.L., 2005. Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Marine Ecology Progress Series, 292, 41-50.

  33. De Kluijver, M.J., 1993. Sublittoral hard-substratum communities off Orkney and St Abbs (Scotland). Journal of the Marine Biological Association of the United Kingdom, 73 (4), 733-754.

  34. De Kluijver, M.J.; Ingalsuo, S.S. & de Bruyne, 2016. Pomatoceros triqueter.

  35. Dethier, M.N., 1994. The ecology of intertidal algal crusts: variation within a functional group. Journal of Experimental Marine Biology and Ecology, 177 (1), 37-71.

  36. Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D. & Tett, P., 2008. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79 (3), 429-439.

  37. Dixon, D.R., 1985. Cytogenetic procedures. Pomatoceros triqueter: A test system for environmental mutagenesis. In The effects of stress and pollution in marine animals.

  38. Donovan, S.K., 2011. Postmortem encrustation of the alien bivalve Ensis americanus (Binney) by the barnacle Balanus crenatus Brugière in the North Sea. Palaios, 26, 665-668.

  39. Dons, C., 1927. Om Vest og voskmåte hos Pomatoceros triqueter. Nyt Magazin for Naturvidenskaberne, LXV, 111-126.

  40. Eckman, J.E. & Duggins, D.O., 1993. Effects of flow speed on growth of benthic suspension feeders. Biological Bulletin, 185, 28-41.

  41. Edyvean, R. & Ford, H., 1986. Spore production by Lithophyllum incrustans (Corallinales, Rhodophyta) in the British Isles. British Phycological Journal, 21 (3), 255-261.

  42. Edyvean, R.G.J.  & Ford, H., 1987. Growth rates of Lithophyllum incrustans (Corallinales, Rhodophyta) from south west Wales. British Phycological Journal, 22 (2), 139-146.

  43. Edyvean, R.G.J.  & Ford, H., 1984a. Population biology of the crustose red alga Lithophyllum incrustans Phil. 2. A comparison of populations from three areas of Britain. Biological Journal of the Linnean Society, 23 (4), 353-363.

  44. Edyvean, R.G.J. & Ford, H., 1984b. Population biology of the crustose red alga Lithophyllum incrustans Phil. 3. The effects of local environmental variables. Biological Journal of the Linnean Society, 23, 365-374.

  45. Fernandezā€Leborans, G. & Gabilondo, R., 2006. Taxonomy and distribution of the hydrozoan and protozoan epibionts on Pagurus bernhardus (Linnaeus, 1758) (Crustacea, Decapoda) from Scotland. Acta Zoologica, 87, 33-48.

  46. Forbes, L., Seward, M.J. & Crisp, D.J., 1971. Orientation to light and the shading response in barnacles. In: Proceedings of the 4th European Marine Biology Symposium. Ed. Crisp, D.J., Cambridge University Press, Cambridge. pp 539-558.

  47. Foster, B.A., 1970. Responses and acclimation to salinity in the adults of some balanomorph barnacles. Philosophical Transactions of the Royal Society of London, Series B, 256, 377-400.

  48. Foster, P., Hunt, D.T.E. & Morris, A.W., 1978. Metals in an acid mine stream and estuary. Science of the Total Environment, 9, 75-86.

  49. Gittenberger, A. & Van Loon, W.M.G.M., 2011. Common Marine Macrozoobenthos Species in the Netherlands, their Characterisitics and Sensitivities to Environmental Pressures. GiMaRIS report no 2011.08.

  50. Gorzula, S., 1977. A study of growth in the brittle-star Ophiocomina nigra. Western Naturalist, 6, 13-33.

  51. Guarnieri, G., Terlizzi, A., Bevilacqua, S. & Fraschetti, S., 2012. Increasing heterogeneity of sensitive assemblages as a consequence of human impact in submarine caves. Marine Biology, 159 (5), 1155-1164.

  52. Guiry, M.D. & Guiry, G.M. 2015. AlgaeBase [Online], National University of Ireland, Galway [cited 30/6/2015]. Available from: http://www.algaebase.org/

  53. Harms, J. & Anger, K., 1983. Seasonal, annual, and spatial variation in the development of hard bottom communities. Helgoländer Meeresuntersuchungen, 36, 137-150.

  54. Hatcher, A.M., 1998. Epibenthic colonization patterns on slabs of stabilised coal-waste in Poole Bay, UK. Hydrobiologia, 367, 153-162.

  55. Hayward, P.J. & Ryland, J.S. (ed.) 1995a. The marine fauna of the British Isles and north-west Europe. Volume 2. Molluscs to Chordates. Oxford Science Publications. Oxford: Clarendon Press.

  56. Heath, D., 1976. The distribution and orientation of epizoic barnacles on crabs. Zoological Journal of the Linnean Society, 59, 59-67.

  57. Hiscock, K., 1983. Water movement. In Sublittoral ecology. The ecology of shallow sublittoral benthos (ed. R. Earll & D.G. Erwin), pp. 58-96. Oxford: Clarendon Press.

  58. Hoare, R. & Hiscock, K., 1974. An ecological survey of the rocky coast adjacent to the effluent of a bromine extraction plant. Estuarine and Coastal Marine Science, 2 (4), 329-348.

  59. Holme, N.A. & Wilson, J.B., 1985. Faunas associated with longitudinal furrows and sand ribbons in a tide-swept area in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 65, 1051-1072.

  60. Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.

  61. Hudon, C., Bourget, E., & Legendre, P., 1983. An integrated study of the factors influencing the choice of the settling site of Balanus crenatus cyprid larvae. Canadian Journal of Fisheries and Aquatic Sciences, 40 (8), 1186-1194.

  62. Huthnance, J., 2010. Ocean Processes Feeder Report. London, DEFRA on behalf of the United Kingdom Marine Monitoring and Assessment Strategy (UKMMAS) Community.

  63. Irvine, L. M. & Chamberlain, Y. M., 1994. Seaweeds of the British Isles, vol. 1. Rhodophyta, Part 2B Corallinales, Hildenbrandiales. London: Her Majesty's Stationery Office.

  64. Jakola, K.J. & Gulliksen, B., 1987. Benthic communities and their physical environment to urban pollution from the city of Tromso, Norway. Sarsia, 72, 173-182.

  65. Jensen, A.C., Collins, K.J., Lockwood, A.P.M., Mallinson, J.J. & Turnpenny, W.H., 1994. Colonization and fishery potential of a coal-ash artificial reef, Poole Bay, United Kingdom. Bulletin of Marine Science, 55, 1263-1276.

  66. Kain, J.M., 1982. The reproductive phenology of nine species of the Rhodophycota in the subtidal region of the Isle of Man. British Phycological Journal, 17, 321-331.

  67. Kain, J.M., 1987. Photoperiod and temperature as triggers in the seasonality of Delesseria sanguinea. Helgolander Meeresuntersuchungen, 41, 355-370.

  68. Kaiser, M.J., Cheney, K., Spence, F.E., Edwards, D.B. & Radford, K., 1999. Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure VII. The effects of trawling disturbance on the fauna associated with the tubeheads of serpulid worms. Fisheries Research (Amsterdam), 40, 195-205.

  69. Kaliszewicz, A., Panteleeva, N., Olejniczak, I., Boniecki, P. and Sawicki, M., 2012. Internal brooding affects the spatial structure of intertidal sea anemones in the Arctic-boreal region. Polar biology, 35 (12), pp.1911-1919.

  70. Kendrick, G.A., 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. Journal of Experimental Marine Biology and Ecology, 147 (1), 47-63

  71. Kenny, A.J. & Rees, H.L., 1994. The effects of marine gravel extraction on the macrobenthos: early post dredging recolonisation. Marine Pollution Bulletin, 28, 442-447.

  72. Kitching, J.A., 1937. Studies in sublittoral ecology. II Recolonization at the upper margin of the sublittoral region; with a note on the denudation of Laminaria forest by storms. Journal of Ecology, 25, 482-495.

  73. Littler, M. & Littler, D., 1998. An undescribed fungal pathogen of reef-forming crustose corraline algae discovered in American Samoa. Coral Reefs, 17 (2), 144-144.

  74. Littler, M. & Littler, D.S. 2013. The nature of crustose coralline algae and their interactions on reefs. Smithsonian Contributions to the Marine Sciences, 39, 199-212

  75. Littler, M.M., 1973. The population and community structure of Hawaiian fringing-reef crustose Corallinaceae (Rhodophyta, Cryptonemiales). Journal of Experimental Marine Biology and Ecology, 11 (2), 103-120.

  76. Littler, M.M. & Littler, D.S., 1995. Impact of CLOD pathogen on Pacific coral reefs. Science, 267, 1356-1356.

  77. Littler, M.M., Littler, D.S. & Brooks, B.L. 2007. Target phenomena on south Pacific reefs: strip harvesting by prudent pathogens? Reef Encounter, 34, 23-24

  78. Luther, G., 1987. Seepocken der deutschen Küstengewässer. Helgol Meeresunters 41, 1–43

  79. Meadows, P.S., 1969. Sublittoral fouling communities on northern coasts of Britain. Hydrobiologia, 34 (3-4), pp.273-294.

  80. Miron, G., Bourget, E. & Archambault, P., 1996. Scale of observation and distribution of adult conspecifics: their influence in assessing passive and active settlement mechanisms in the barnacle Balanus crenatus (Brugière). Journal of Experimental Marine Biology and Ecology, 201 (1), 137-158.

  81. Naylor, E., 1965. Effects of heated effluents upon marine and estuarine organisms. Advances in Marine Biology, 3, 63-103.

  82. Newman, W. A. & Ross, A., 1976. Revision of the Balanomorph barnacles including a catalogue of the species. San Diego Society of Natural History Memoirs, 9, 1–108.

  83. OECD (ed.), 1967. Catalogue of main marine fouling organisms. Vol. 3: Serpulids. Paris: Organisation for Economic Co-operation and Development.

  84. Price, J.H., Irvine, D.E. & Farnham, W.F., 1980. The shore environment. Volume 2: Ecosystems. London Academic Press.

  85. Pyefinch, K.A. & Mott, J.C., 1948. The sensitivity of barnacles and their larvae to copper and mercury. Journal of Experimental Biology, 25, 276-298.

  86. Rainbow, P.S., 1987. Heavy metals in barnacles. In Barnacle biology. Crustacean issues 5 (ed. A.J. Southward), 405-417. Rotterdam: A.A. Balkema.

  87. Riley, K. & Ballerstedt, S., 2005. Pomatoceros triqueter. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme [on-line]. Plymouth: Marine Biological Association of the United Kingdom:. [cited 08/01/2016]. Available from:

  88. Sebens, K.P., 1985. Community ecology of vertical rock walls in the Gulf of Maine: small-scale processes and alternative community states. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc. (ed. P.G. Moore & R. Seed), pp. 346-371. London: Hodder & Stoughton Ltd.

  89. Sebens, K.P., 1986. Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecological Monographs, 56, 73-96.

  90. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  91. Southward, A.J. & Southward, E.C., 1978. Recolonisation of rocky shores in Cornwall after use of toxic dispersants to clean up the Torrey Canyon spill. Journal of the Fisheries Research Board of Canada, 35, 682-706.

  92. Southward, A.J., 1955. On the behaviour of barnacles. I. The relation of cirral and other activities to temperature. Journal of the Marine Biological Association of the United Kingdom, 34, 403-432.

  93. Stubbings, H.G. & Houghton, D.R., 1964. The ecology of Chichester Harbour, south England, with special reference to some fouling species. Internationale Revue der Gesamten Hydrobiologie, 49, 233-279.

  94. Thomas, J.G., 1940. Pomatoceros, Sabella and Amphitrite. LMBC Memoirs on typical British marine plants and animals no.33. University Press of Liverpool

  95. Tillin, H. & Tyler-Walters, H., 2014. Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with marine activities. Phase 2 Report – Literature review and sensitivity assessments for ecological groups for circalittoral and offshore Level 5 biotopes. JNCC Report No. 512B,  260 pp. Available from: www.marlin.ac.uk/publications

  96. UKTAG, 2014. UK Technical Advisory Group on the Water Framework Directive [online]. Available from: http://www.wfduk.org

  97. Warner, G.F., 1985. Dynamic stability in two contrasting epibenthic communities. In Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16-21 September, 1984 (ed. P.E. Gibbs), pp. 401-410.

  98. Watson, D.I., O'Riordan, R.M., Barnes, D.K. & Cross, T., 2005. Temporal and spatial variability in the recruitment of barnacles and the local dominance of Elminius modestus Darwin in SW Ireland. Estuarine, Coastal and Shelf Science, 63 (1), pp.119-131.

  99. Witt, J., Schroeder, A., Knust, R. & Arntz, W.E., 2004. The impact of harbour sludge disposal on benthic macrofauna communities in the Weser estuary. Helgoland Marine Research, 58 (2), 117-128.

  100. Witte, S., Buschbaum, C., van Beusekom, J.E. & Reise, K., 2010. Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years? Biological Invasions, 12 (10), 3579-3589.

Citation

This review can be cited as:

Tillin, H.M. 2016. Coralline crusts in surge gullies and scoured infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 19-06-2018]. Available from: http://www.marlin.ac.uk/habitat/detail/370

Last Updated: 21/03/2016