MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

Laver spire shell (Peringia ulvae)

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Summary

Description

A small spiralling shell with six whorls. Up to 6 mm high but more typically around 4 mm. The shell is brown to yellow in colour. The body of the snail is a clear grey frequently with various pigment spots.

Recorded distribution in Britain and Ireland

Found on all British and Irish coasts

Global distribution

Atlantic, English Channel, North Sea and Baltic. Insufficient detail available to map distribution.

Habitat

Typically found on muddy sand, in estuaries and salt marshes. Sometimes also in lagoons and other areas of reduced salinity. Frequently associated with seagrass beds. Highest densities found mid-tidally but has been recorded down to 100 m depth.

Depth range

0-100

Identifying features

  • Very small brown spiral shell.
  • Whorls of shell not swollen.
  • Outer lip of operculum is straight where it meets the body whorl.
  • Tentacles have a rectangular, black mark near the tip.
  • Left tentacle thicker than the right.
  • The shape of the penis is the best identification feature
  • Larvae have characteristic conspicuous pigment cells in a v-shape on the foot.
  • Larval shell has longitudinal ridges.

Additional information

Also known as the mud snail. Many synonyms have been used in the past but Peringia ulvae is the only one used recently. Hydrobia ulvae is now the standard usage although Peringia is often used as a sub-genus of Hydrobia. Hydrobia neglecta has a black 'v' mark near the tip of the tentacles.
The taxonomy of the Gastropoda has been recently revised (see Ponder & Lindberg 1997, and Taylor 1996). Ponder & Lindberg (1997) suggest that Mesogastropoda should be included in a monophyletic clade, the Caenogastropoda.

Listed by

- none -

Further information sources

Search on:

Biology review

Taxonomy

PhylumMollusca
ClassGastropoda
OrderLittorinimorpha
FamilyHydrobiidae
GenusPeringia
Authority(Pennant, 1777)
Recent SynonymsPeringia ulvae Peringia ulvae (Pennant, 1777)Hydrobia ulvae

Biology

Typical abundanceHigh density
Male size range0.3 - 6mm
Male size at maturity
Female size rangec. 1.5 - 2.0mm
Female size at maturity
Growth formTurbinate
Growth rateData deficient
Body flexibility
Mobility
Characteristic feeding methodNo information, Surface deposit feeder
Diet/food source
Typically feeds onDetritus, periphytic microalgae.
Sociability
Environmental positionEpifaunal
DependencyIndependent.
SupportsHost

over 50 species of digenean trematode.

Is the species harmful?No

No text entered

Biology information

The males can be distinguished by a visible penis. Frequently found in very high densities - has been recorded up to 300,000 per square metre. Growth rate varies with time of year and with degree of parasite infestation. Parasite infestation is believed to cause increased growth rates, gigantism and altered morphology in this species. Parasitised snails may reach up to 9mm in height. Parasitism also affects behaviour, slowing locomotion and reducing burrowing activity. The feeding method of Hydrobia ulvae can also be classified as 'microbrowser'.

Habitat preferences

Physiographic preferencesOpen coast, Sea loch / Sea lough, Ria / Voe, Estuary, Isolated saline water (Lagoon), Enclosed coast / Embayment, Open coast, Sea loch / Sea lough, Ria / Voe, Estuary, Isolated saline water (Lagoon), Enclosed coast / Embayment
Biological zone preferencesLower eulittoral, Lower infralittoral, Lower littoral fringe, Mid eulittoral, Sublittoral fringe, Upper eulittoral, Upper infralittoral, Upper littoral fringe, Lower eulittoral, Lower infralittoral, Lower littoral fringe, Mid eulittoral, Sublittoral fringe, Upper eulittoral, Upper infralittoral, Upper littoral fringe
Substratum / habitat preferencesMud, Muddy sand, Sandy mud, Mud, Muddy sand, Sandy mud
Tidal strength preferencesModerately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.), Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferencesExtremely sheltered, Sheltered, Ultra sheltered, Very sheltered, Extremely sheltered, Sheltered, Ultra sheltered, Very sheltered
Salinity preferencesFull (30-40 psu), Low (<18 psu), Reduced (18-30 psu), Variable (18-40 psu), Full (30-40 psu), Low (<18 psu), Reduced (18-30 psu), Variable (18-40 psu)
Depth range0-100
Other preferencesNo text entered
Migration PatternNon-migratory / resident

Habitat Information

Often found as high as the high level strand line in a dried blanket of green algae. They appear to be dead but rapidly revive when returned to more suitable conditions. Hydrobia ulvae does not undertake any true migration but considerable dispersal is possible through floating at the surface using a mucous raft. A cycle of climbing, floating and crawling up and down the shore has been hypothesised. Work by Barnes (1981) suggests however that climbing is simply part of normal browsing behaviour.

Life history

Adult characteristics

Reproductive typeGonochoristic (dioecious)
Reproductive frequency Annual protracted
Fecundity (number of eggs)11-100
Generation timeInsufficient information
Age at maturity6 - 12 months
SeasonMarch - October
Life span1-2 years

Larval characteristics

Larval/propagule type-
Larval/juvenile development Lecithotrophic
Duration of larval stage11-30 days
Larval dispersal potential Greater than 10 km
Larval settlement periodInsufficient information

Life history information

The longevity of this species is debatable. Hydrobia ulvae may live up to five years in aquaria and over four years in the arctic. Various studies have suggested that it lives from just over 1 year up to 2.5 years. Individuals hatching from eggs laid in spring can breed in autumn, whereas those hatching in autumn over-winter before breeding in spring. The species is gonochoristic and sperm transfer occurs by copulation. Minimum egg hatching time has been recorded as five days. There is considerable conflicting evidence over the developmental mechanism of the larvae of this species. Some workers (Fish & Fish, 1977a,b) have found the planktonic stage to last up to four weeks and development to be entirely planktotrophic. Others (Pilkington, 1971) have found the planktonic stage to be completely absent with a nonfeeding benthic larva that metamorphoses after just two days. Snails producing planktotrophic forms have several (7-22) smaller eggs that hatch into veliger larvae at around 150 microns. Snails producing lecithotrophic forms lay fewer (3-7) larger eggs. Maximum number of eggs recorded from one mass is 50. The timing of the breeding season varies with latitude. In the north of Scotland there is a short spawning period in Spring. In populations further south the spawning period is more protracted and is split into two peaks (spring and autumn). Eggs are laid preferentially on the shells of live individuals of this species but also on empty shells and grains of sand. The egg mass acquires a protective layer of sand grains.

Sensitivity reviewHow is sensitivity assessed?

Physical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate Low
Removal of the substratum will also result in the removal of the population. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Populations that have the benthic larval form will recover less rapidly. Adults can immigrate into the area by floating on a mucous raft.
Intermediate Very high Low High
For an epifaunal species, Hydrobia ulvae is quite tolerant of smothering. However, survival depends and several factors. The snail can only burrow up through certain sorts of sediment. If the silt content of the smothering sediment is high and the water content low then it is unlikely that the surface will be regained from 5 cm down. Looser sediment with high water and low silt content can be negotiated quite rapidly. The surface is generally regained within a day. If the surface cannot be regained then Hydrobia ulvae can survive burial for quite extended periods although this is highly temperature dependent. Temperatures of 20 degrees Centigrade result in all individuals dying after 10 days. Survival is much better at lower temperatures. It is thought that oxygen stress is the cause of mortality. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.
Tolerant Not relevant Not sensitive Low
Detritus forms one of the main food sources for this species so increased siltation may be beneficial. As the snail lives in and on sediment, increases in sediment deposition will probably not affect locomotion.
No information
Low Immediate Not sensitive Moderate
When emersed and not active the snail part buries itself in the mud to reduce desiccation and temperature extremes. The species can tolerate desiccating conditions for extended periods. The snail can be left at the high strandline and not be covered by the tides for periods over a week without any adverse effects. Feeding and/or reproduction is limited during this time. Activity resumes as normal when the next spring tides wash the snails back into regular tidal coverage.
Low Immediate Not sensitive Moderate
The snail is subject to highly variable emergence regimes anyway. Following any flotation on a mucous raft the snails location on the shore depends on where the previous tide left it. Feeding or reproduction may be hindered at higher elevations on the shore. Activity resumes as normal when the next spring tides wash the snails back into regular tidal coverage.
No information
Intermediate Very high Low Moderate
This species prefers some water movement but is also found in isolated lagoons with negligible water flow. Decreases in water flow are unlikely to have any effect. Increases in water flow rate may restrict locomotion on the seabed, wash floating individuals elsewhere, continually displace individuals on the seabed and reduce the detritus available for feeding. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.
No information
Intermediate Immediate Very Low
The species is quite tolerant of extremes in temperature. Can survive air temperatures below freezing. The snails can sometimes being exposed continuously to the air for several days between spring tides. This gives the potential for exposure to quite high air temperatures. Higher temperatures have been implicated in the proliferation of trematode parasites which have caused mass mortalities. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.
No information
Tolerant Not relevant Not sensitive Low
This species probably has very limited facility for visual perception and as such is unlikely affected by turbidity.
No information
High High Moderate Low
The species tends not to inhabit particularly exposed areas primarily due to the lack of suitable muddy habitat. Decreases in wave exposure will have no effect. Increases in wave exposure are likely to kill the population either directly through physical damage, continual displacement and washing away or indirectly through change of substratum. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Populations that have the benthic larval form will recover less rapidly. Adults can immigrate into the area by floating on a mucous raft.
No information
Tolerant Not relevant Not sensitive High
This species probably has very limited facility for vibration detection and as such is unlikely to be sensitive to noise.
Tolerant Not relevant Not sensitive High
This species probably has very limited facility for visual perception and as such is unlikely to be sensitive to visual presence.
Low Very high Very Low Low
The small nature of the species means that physical impact may cause death. Slight damage to the shell at the growing edge can probably be repaired. However, this species is very small and is likely to pass through a passing scallop dredge, or be pushed aside by an anchor. Physical disturbance is more likely to remove this species, its substratum (see above) or to displace individuals (see below). Therefore, an intolerance of low has been recorded. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.
Tolerant Not relevant Not sensitive Low
The species is mobile and can disperse by floating on a mucous raft. Displacement will have no effect.

Chemical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
Low Immediate Not sensitive Moderate
Reported as present in polluted waters, recorded from the Mersey estuary which is subject to industrial pollution.
Heavy metal contamination
No information No information No information Not relevant
Insufficient
information
Hydrocarbon contamination
Intermediate Very high Low Moderate
Information regarding Hydrobia ulvae in particular is not available although observations following the Amoco Cadiz oil spill at Roscoff showed that gastropod populations were greatly reduced. Populations had recovered a year later. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.
Radionuclide contamination
No information No information No information Not relevant
Insufficient
information
Changes in nutrient levels
Low Immediate Not sensitive Moderate
Reported as present in polluted waters, recorded from the Mersey estuary which is subject to sewage pollution.
Tolerant Not relevant Not sensitive Moderate
The species is found in a wide range of salinities so changes of one or two salinity bands will be unlikely to have any effect.
No information
Intermediate Very high Low Moderate
The species can live in conditions of reduced oxygen concentration but can die if combined with smothering or other stresses. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Adults can also immigrate into the area by floating on a mucous raft.

Biological pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate Moderate
There are records of mass mortalities of Hydrobia ulvae caused by high temperatures triggering mass development of larval digenean trematodes within the snails. The breeding season is often quite protracted. The dispersive ability of the abundant pelagic larval form is considerable. Populations that have the benthic larval form will recover less rapidly. Adults can immigrate into the area by floating on a mucous raft.
No information No information No information Not relevant
Insufficient
information
Not relevant Not relevant Not relevant Low
It is extremely unlikely that this species would be extracted.
Tolerant Not relevant Not sensitive Low
This snail has no known obligate relationships with other species.

Additional information

Importance review

Policy/legislation

- no data -

Status

Non-native

Importance information

National status is not available but is almost certainly widespread. This species can occur in very high densities (up to 300,000 per square metre - levels at which considerable inter and intra specific competition can occur) Hydrobia ulvae may comprise up to 75 % of biomass and 90 % of macrofaunal energy flow may pass through it. Hydrobia ulvae does not form a known unique food source for any other species but it does form a dietary component of the opisthobranch mollusc Retusa obtusa. The hydroid Cordylophora caspia may grow on the shell. The species is occasionally used for scientific research.

Bibliography

  1. Anderson, A., 1971. Intertidal activity, breeding and the floating habit of Hydrobia ulvae in the Ythan estuary. Journal of the Marine Biological Association of the United Kingdom, 51, 423-437.

  2. Barnes, R.S.K., 1981. An experimental study of the pattern and significance of the climbing behaviour of Hydrobia ulvae. Journal of the Marine Biological Association of the United Kingdom, 61, 285-299.

  3. Barnes, R.S.K., 1988. On reproductive strategies in adjacent lagoonal and intertidal marine populations of the gastropod Hydrobia ulvae. Journal of the Marine Biological Association of the United Kingdom, 68, 365-375.

  4. Barnes, R.S.K., 1990. Reproductive strategies in the contrasting populations of the coastal gastropod Hydrobia ulvae. II. Longevity and lifetime egg production. Journal of Experimental Marine Biology and Ecology, 138, 183-200.

  5. Bradshaw, C., Veale, L.O., Hill, A.S. & Brand, A.R., 2002. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: a re-analysis of an historical dataset. Journal of Sea Research, 47, 161-184.

  6. Chandrasekara, W.U. & Frid, C.L.J., 1998. A laboratory assessment of the survival and vertical movement of two epibenthic gastropod species, Hydrobia ulvae, (Pennant) and Littorina littorea (Linnaeus), after burial in sediment. Journal of Experimental Marine Biology and Ecology, 221, 191-207.

  7. Clay, E., 1960. Literature survey of the common fauna of estuaries. 8. Hydrobia ulvae (Pennant), Hydrobia ventrosa (Montagu) and Potamopyrgus jenkinsi (Smith). Imperial Chemical Industries Ltd, Paints Division, Research Department Memorandum PVM45/B/483.

  8. Fish, J.D. & Fish, S., 1974. The breeding cycle and growth of Hydrobia ulvae in the Dovey estuary. Journal of the Marine Biological Association of the United Kingdom, 54, 685-697.

  9. Fish, J.D. & Fish, S., 1977a. The veliger larva of Hydrobia ulvae with observations on the veliger of Littorina littorea (Mollusca: Prosobranchia). Journal of Zoology, 182, 495-503.

  10. Fish, J.D. & Fish, S., 1977b. The effects of temperature and salinity on embryonic development of Hydrobia ulvae. Journal of the Marine Biological Association of the United Kingdom, 57, 213-218.

  11. Fish, J.D., 1979. The yellow pigment cells of Hydrobia ulvae (Pennant) (Mollusca: Prosobranchia). Journal of Molluscan Studies, 45, 345-352.

  12. Fretter, V. & Graham, A., 1994. British prosobranch molluscs: their functional anatomy and ecology, revised and updated edition. London: The Ray Society.

  13. Graham, A., 1988. Molluscs: prosobranchs and pyramellid gastropods (2nd ed.). Leiden: E.J. Brill/Dr W. Backhuys. [Synopses of the British Fauna No. 2]

  14. Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

  15. Huxham, M., Raffaelli, D. & Pike, A.W., 1995. The effect of larval trematodes on the growth and burrowing behaviour of Hydrobia ulvae (Gastropoda: Prosobranchia) in the Ythan estuary, N.E. Scotland. Journal of Experimental Marine Biology and Ecology, 185, 1-17.

  16. Jensen, K.T. & Mouritsen K.N., 1992. Mass mortality in two common soft bottom invertebrates, Hydrobia ulvae and Corophium volutator, the possible role of trematodes. Helgolander Meeresuntersuchungen, 46, 329-339.

  17. Pilkington, M.C., 1971. The veliger stage of Hydrobia ulvae (Pennant). Proceedings of the Malacological Society of London, 39, 281-287.

  18. Ponder, W.F. & Lindberg, D.R., 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83-265.

  19. Sola, J.C., 1996. Population dynamics, reproduction and growth and secondary production of the mud snail Hydrobia ulvae (Pennant) Journal of Experimental Marine Biology and Ecology, 205, 49-62.

  20. Taylor, J.D.(ed.), 1996. Origin and Evolutionary Radiation of the Mollusca. Oxford: Oxford University Press.

Citation

This review can be cited as:

Jackson, A. 2000. Peringia ulvae Laver spire shell. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/species/detail/1295

Last Updated: 17/02/2000