MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

Sand mason (Lanice conchilega)

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Summary

Description

Lanice conchilega is a polychaete worm up to 30 cm in length and yellow, pink and brownish in colour. Its body is divided into between 150 and 300 segments, with 17 segments (chaetigers) in the front region. Lanice conchilega has 3 pairs of bushy gills that are blood red in colour. It makes a tube out of sand grains and shell fragments, which has a characteristic frayed end that protrudes above the sand. Lanice conchilega uses its crown of white tentacles to trap particles of food.

Recorded distribution in Britain and Ireland

Lanice conchilega is found around all coasts of Britain and Ireland.

Global distribution

Lanice conchilega is found from the Arctic to the Mediterranean, in the Arabian Gulf and the Pacific.

Habitat

Lanice conchilega is found in intertidal and subtidal sediments

Depth range

Intertidal to 1700m

Identifying features

  • Up to 30 cm long.
  • Body with 150-300 segments.
  • 17 segments (chaetigers) in front region.
  • 3 pairs of bushy gills.
  • Rear parapods as rectangular flaps.
  • Yellow, pink or brown in colour.
  • Crown of white tentacles.
  • Makes tube out of sand grains and shell fragments.

Additional information

No text entered

Listed by

- none -

Further information sources

Search on:

Biology review

Taxonomy

PhylumAnnelida
ClassPolychaeta
OrderTerebellida
FamilyTerebellidae
GenusLanice
Authority(Pallas, 1766)
Recent Synonyms

Biology

Typical abundanceModerate density
Male size range25-30cm
Male size at maturity
Female size rangeMedium-large(21-50cm)
Female size at maturity
Growth formTubicolous
Growth rate
Body flexibilityHigh (greater than 45 degrees)
Mobility
Characteristic feeding methodActive suspension feeder, Surface deposit feeder
Diet/food source
Typically feeds onDetritus
Sociability
Environmental positionInfaunal
Dependency-
Supports-
Is the species harmful?No information

Biology information

Sociability
Lanice conchilega can be found as a solitary individual or in populations of several thousand per m2.

Feeding
Buhr & Winter (1977) suggested that Lanice conchilega is unlikely to be just a surface deposit feeder as the fringed ends of its tube form an extensive network meaning that detritus will be trapped in the fringe. They suggest that feeding method is density dependant. At low densities (several dozen individuals per m2) Lanice conchilega will preferentially deposit feed. At high densities (several thousand individuals per m2) competition at the sediment surface will force animals to adopt suspension feeding.

Habitat preferences

Physiographic preferencesOpen coast, Offshore seabed, Strait / sound, Estuary, Enclosed coast / Embayment
Biological zone preferencesBathybenthic (Bathyal), Circalittoral offshore, Lower circalittoral, Lower eulittoral, Lower infralittoral, Sublittoral fringe, Upper circalittoral, Upper infralittoral
Substratum / habitat preferencesCoarse clean sand, Fine clean sand, Muddy sand, Sandy mud
Tidal strength preferencesModerately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferencesExtremely sheltered, Moderately exposed, Sheltered, Very sheltered
Salinity preferencesFull (30-40 psu), Variable (18-40 psu)
Depth rangeIntertidal to 1700m
Other preferencesNo text entered
Migration PatternNon-migratory / resident

Habitat Information

Hartmann-Shröder (1971; cited in Carey, 1987) reported that Lanice conchilega was found from the low water neap tide mark down to 1700m.

Life history

Adult characteristics

Reproductive typeGonochoristic (dioecious)
Reproductive frequency No information
Fecundity (number of eggs)No information
Generation timeInsufficient information
Age at maturityInsufficient information
SeasonApril - October
Life spanInsufficient information

Larval characteristics

Larval/propagule type-
Larval/juvenile development Planktotrophic
Duration of larval stage1-2 months
Larval dispersal potential Greater than 10 km
Larval settlement periodInsufficient information

Life history information

Reproduction
Adult Lanice conchilega were seen to release gametes over several hours in June 1991 (Ansell, 1995). Kuhl (1972) remarked that the larvae of Lanice conchilega occur from April to October. The larvae spend up to 60 days in the plankton, so that larvae could potentially disperse over a great distance, depending on the hydrographical regime.

Sensitivity reviewHow is sensitivity assessed?

Physical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate Low
Lanice conchilega lives in the sediment, a loss of substratum would cause a loss of the population. Therefore an intolerance of high has been recorded. A recoverability of high has been recorded (see additional information below).
Low High Low Low
Lanice conchilega lives in the sediment and uses sand grains and shell fragments to make a tube that rises several centimetres above the sediment surface. It is therefore, unlikely that silt will smother the worm. It is also likely that Lanice conchilega will be able to move up through the extra sediment, therefore intolerance has been recorded as low. However, smothering by impermeable material is likely to result in anoxic conditions and have a greater impact.
Tolerant Not relevant Not sensitive Low
Lanice conchilega is a deposit and/ or suspension feeder and unless the feeding crown is clogged is unlikely to be troubled by an increase in suspended sediment and tolerant has, therefore, been recorded.
Low High Low Low
A decrease in suspended sediment may mean a reduction in the amount of available food for Lanice conchilega, however the protruding part of the tube affects the near bottom flow rate which can lead to an increase in sediment re-suspension (Jones & Jago, 1993) In any case, any adverse affect will lead to a loss of condition rather than mortality. Therefore, an intolerance of low has been recorded.
Intermediate High Low Low
Lanice conchilega is found on the lower shore and is therefore tolerant to some level of desiccation. It can retract into its tube, which can be up to 65cm long, avoiding the effects of desiccation. Only individuals at the upper limit of distribution are likely to be killed, therefore, intolerance has been recorded as intermediate. Desiccation is most likely to be a factor in coarse sands which drains rapidly.
Intermediate High Low Low
Lanice conchilega tubes can be seen on sandflats at low tide. An increase in emergence may lead to an increase in predation by wading sea birds, an increase in exposure to desiccation (see above) and changes in temperature (see below). Intolerance has therefore been recorded as intermediate and a recoverability of high has been recorded (see additional information below).
Tolerant* Not relevant Not sensitive* Low
Lanice conchilega thrives in the subtidal zone and therefore could potentially benefit from a decreased emergence regime. It is possible that decreased emergence would allow the species to colonize further up the shore. Hence, tolerant* has been recorded.
Intermediate High Low Low
Increased water flow will remove finer sediments or possibly sediments altogether. It may also interfere with feeding. The distribution and extent of the population may be altered due to changes in the preferred substratum of Lanice conchilega. Therefore, an intolerance of intermediate has been recorded.
Intermediate High Low Low
A decrease in water flow will lead to deposition of finer sediments and the possibility of reduced food supply. Changes in water flow rate are likely to change the distribution and extent of the population due to changes in the preferred substratum of Lanice conchilega. Therefore, an intolerance of intermediate has been recorded.
Low High Low Low
No information was found regarding tolerance of Lanice conchilega to high temperatures. Lanice conchilega is found over a wide geographical range, in the Arctic, Mediterranean, Arabian Gulf and Pacific. Therefore, it is likely to be tolerant of a wide range of temperatures. An acute increase in temperature may result in physiological stress but is unlikely to lead to mortality. An intolerance of low has therefore been recorded.
High High Moderate High
Lanice conchilega is a species that is intolerant of low temperatures (Beukema, 1990). An intertidal population of Lanice conchilega, in the northern Wadden Sea, was wiped out during a severe winter of 1995/96 (Strasser & Pielouth 2001). The population took 3 years to fully recover, as there was low recruitment for the first 2 years. Crisp (1964) found there to be mortality of Lanice conchilega between the tidemarks but not at lower levels. After other hard winters Lanice conchilega recovered fast due to a good larval supply. Intolerance has, therefore, been recorded as high. Recoverability has been recorded as moderate (see additional information below).
Tolerant Not relevant Not sensitive Not relevant
Lanice conchilega is found in estuarine regions which experience high levels of turbidity. An increase in turbidity would lead to reduced light penetration of the water column. Lanice conchilega is not light dependant, therefore, tolerant has been recorded.
Tolerant Not relevant Not sensitive Not relevant
Lanice conchilega is not affected by light availability therefore tolerant has been recorded.
High High Moderate Moderate
Rees et al. (1977) found that only 1% of the Lanice conchilega population in Colwyn Bay apparently survived after winter storms. An increase in wave exposure is likely to lead to a high mortality of Lanice conchilega, therefore, intolerance has been recorded as high. Recoverability has been recorded as high (see additional information below).
Low High Low Low
A decrease in wave exposure in combination with weak tidal streams will invariably lead to a decrease in food supply. If, however the wave exposure is decreased but there are moderate tidal streams it is unlikely Lanice conchilega will be adversely affected. Therefore an intolerance of low has been recorded.
Tolerant Not relevant Not sensitive Low
No information was found concerning the intolerance of Lanice conchilega to noise. However, it is unlikely to be affected by noise and vibration at the level of the benchmark
Tolerant Not relevant Not sensitive Low
Lanice conchilega lives in a tube and its visual range is probably very limited. Not sensitive has therefore been recorded.
Intermediate Very high Low Low
Lanice conchilega inhabits a permanent tube and is likely to be damaged by any activity that penetrates the sediment. Ferns et al. (2000) investigated the effect of mechanical cockle harvesting (see extraction below). The tubes of Lanice conchilega were damaged but this damage was seen to be repaired. An intolerance of intermediate has therefore been recorded. A recoverability of very high has been recorded (see additional information below). This assessment is for minor abrasion or disturbance, major abrasion, or disturbance would be similar to substratum removal.
Intermediate Very high Low Low
Displacement of Lanice conchilega would lead to increased risk of predation from flat fish (Ansell, 1995). Yonow (1989) observed Lanice conchilega re-establishing tubes immediately after removal from the sediment into a suitable sediment in the laboratory. Intolerance has therefore been recorded as intermediate.

Chemical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate Very low
No information was found directly relating to the effects of synthetic chemicals on Lanice conchilega. However, there is evidence from other polychaete species. Collier & Pinn (1998) investigated the effect on the benthos of Ivermectin, treatment for infestations of sea-lice on farmed salmonids. The ragworm Hediste diversicolor was particularly susceptible, exhibiting 100% mortality within 14 days when exposed to 8 mg/m2 of Ivermectin in a microcosm. Arenicola marina was also intolerant of Ivermectin through the ingestion of contaminated sediment (Thain et al., 1998; cited in Collier & Pinn, 1998) and it was suggested that deposit feeding was an important route for exposure to toxins. Beaumont et al. (1989) investigated the effects of tri-butyl tin (TBT) on benthic organisms. At concentrations of 1-3 g/l there was no significant effect on the abundance of Hediste diversicolor or Cirratulus cirratus after 9 weeks in a microcosm. However, no juvenile polychaetes were retrieved from the substratum and hence there is some evidence that TBT had an effect on the larval and/or juvenile stages of these polychaetes. The high mortality of polychaetes due to exposure to Ivermectin suggests a high intolerance to synthetic chemicals, but with very low confidence in the absence of direct evidence for Lanice conchilega. Recoverability is recorded as high (see additional information below).
Heavy metal contamination
Intermediate High Low Low
Crompton (1997) suggests the following concentrations of heavy metals would result in the mortality of annelids after short term (4-14 days) exposure:
  • Hg 0.1-1mg/l.
  • Cu 0.01-0.1mg/l.
  • Cd 1-10mg/l.
  • Zn 1-10mg/l.
  • Pb 0.1-1mg/l.
  • Cr 0.1-1mg/l.
  • As 1-10mg/l.
  • Ni 10-100mg/l.
Bryan (1984) suggests polychaetes are fairly resistant to heavy metals therefore intolerance has been recorded as intermediate. A recoverability of moderate has been recorded (see additional information below).
Hydrocarbon contamination
Intermediate High Low Moderate
Soft sediment communities and especially infaunal polychaetes are particularly effected by oil pollution (Suchanek, 1993). A 20 year study investigating community effects after the Amoco Cadiz oil spill of 1978 (Dauvin, 2000) found that a population of Lanice conchilega was established between 1978-84 but disappeared after 1985. An intolerance of intermediate has been recorded. A recoverability of moderate has been recorded (see additional information below) as oil may be retained in sediments preventing re-establishment of populations.
Radionuclide contamination
No information Not relevant No information Not relevant
No evidence was found regarding the intolerance of Lanice conchilega to radionuclide contamination.
Changes in nutrient levels
Intermediate Moderate Moderate Very low
Moderate nutrient enrichment may be beneficial but increased nutrient enrichment may result in a community dominated with opportunist species (e.g. capitellids). This results in an increase in abundance but a decrease in species richness eventually leading to abiotic, anoxic sediments (Pearson & Rosenberg, 1978). Intolerance has therefore been recorded as intermediate.
Not relevant Not relevant Not relevant Not relevant
No information was found concerning the reaction of Lanice conchilega to hypersaline conditions (>40psu). It is unlikely that Lanice conchilega would experience hypersaline conditions and therefore not relevant has been recorded.
Intermediate High Low Low
Lanice conchilega is found in estuaries but in smaller numbers than fully saline conditions. Intolerance has therefore been recorded as intermediate as a decrease in salinity may lead to a reduction in population numbers. Recoverability has been recorded as high (see additional information below).
Intermediate High Low Low
No information was found on the tolerance of Lanice conchilega to changes in oxygenation. However, Cole et al. (1999) suggest adverse effects on marine species at oxygen concentrations below 4mg/l and probable adverse effects below 2mg/l. Intolerance has therefore been recorded as intermediate. Recoverability has been recorded as high (see additional information below).

Biological pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
No information No information No information Not relevant
No information was found on diseases of Lanice conchilega.
No information No information No information Not relevant
No information was found on alien species which may compete with Lanice conchilega.
Not relevant Not relevant Not relevant Not relevant
No information was found that Lanice conchilega is extracted deliberately therefore not relevant has been recorded.
Intermediate Moderate Moderate Moderate
Ferns et al. (2000) investigated the effect of mechanical cockle harvesting on intertidal communities, they found that the harvesting damaged Lanice conchilega as they live in permanent tubes and are therefore incapable of movement, they can however repair damage to tubes. Intolerance has therefore been recorded as intermediate. Recoverability has been recorded as moderate (see additional information below).

Additional information

Recoverability
Lanice conchilega spends up to 60 days in the plankton and could disperse over a wide area. Heuers & Jaklin (1999) found that areas with adult worms or artificial tubes were settled and areas without these structures were not. Strasser & Pielouth (2001) reported that larvae were seen to settle in areas where there were no adults (see decrease in temperature) but took 3 years to re-establish the population. Recoverability is, therefore, probably quicker in areas that already have a population of Lanice conchilega but will occur in suitable substratum within only a few years even in the absence of existing populations.

Importance review

Policy/legislation

- no data -

Status

Non-native

Importance information

Structure
The tube which Lanice conchilega builds provides structure to the sediment, very much like a hollow rod stabilising the sediment (Jones & Jago, 1993). Lanice conchilega consolidates the sediment, obstructing the activities of predatory burrowers and enabling other sedentary animals to establish themselves (Wood, 1987).

Bibliography

  1. Ansell, A.D., 1995. Surface activity of some benthic invertebrate prey in relation to the foraging activity of juvenile flatfishes. In Proceedings of the 28th European Marine Biology Symposium, Institute of Marine Biology, Crete. 23-28 September 1993. Biology and Ecology of Shallow Coastal Waters (ed. A. Eleftheriou, A.D. Ansell & C.J. Smith), pp. 245-252. Fredensborg: Olsen & Olsen

  2. Beaumont, A.R., Newman, P.B., Mills, D.K., Waldock, M.J., Miller, D. & Waite, M.E., 1989. Sandy-substrate microcosm studies on tributyl tin (TBT) toxicity to marine organisms. Scientia Marina, 53, 737-743.

  3. Beukema, J.J., 1990. Expected effects of changes in winter temperatures on benthic animals living in soft sediments in coastal North Sea areas. In Expected effects of climatic change on marine coastal ecosystems (ed. J.J. Beukema, W.J. Wolff & J.J.W.M. Brouns), pp. 83-92. Dordrecht: Kluwer Academic Publ.

  4. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  5. Buhr, K.J. & Winter, J.E., 1977. Distribution and maintenance of a Lanice conchilega association in the Weser estuary (FRG), with special reference to the suspension-feeding behaviour of Lanice conchilega. In Proceedings of the Eleventh European Symposium of Marine Biology, University College, Galway, 5-11 October 1976. Biology of Benthic Organisms (ed. B.F. Keegan, P.O. Ceidigh & P.J.S. Boaden), pp. 101-113. Oxford: Pergamon Press.

  6. Carey, D.A., 1987. Sedimentological effects and palaeoecological implications of the tube-building polychaete Lanice conchilega Pallas. Sedimentology, 34, 49-66.

  7. Collier, L.M. & Pinn, E.H., 1998. An assessment of the acute impact of the sea lice treatment Ivermectin on a benthic community. Journal of Experimental Marine Biology and Ecology, 230, 131-147.

  8. Crisp, D.J. (ed.), 1964. The effects of the severe winter of 1962-63 on marine life in Britain. Journal of Animal Ecology, 33, 165-210.

  9. Crompton, T.R., 1997. Toxicants in the aqueous ecosystem. New York: John Wiley & Sons.

  10. Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

  11. Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

  12. Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

  13. Hayward, P.J. 1994. Animals of sandy shores. Slough, England: The Richmond Publishing Co. Ltd. [Naturalists' Handbook 21.]

  14. Heuers, J. & Jaklin, S., 1999. Initial settlement of Lanice conchilega. Senckenbergiana Maritima, 29 (suppl.), 67-69.

  15. Jones, S.E. & Jago, C.F., 1993. In situ assessment of modification of sediment properties by burrowing invertebrates. Marine Biology, 115, 133-142.

  16. Kuhl, H., 1972. Hydrography and biology of the Elbe Estuary. Oceanography and Marine Biology: an Annual Review, 10, 225-309.

  17. Pearson, T.H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review, 16, 229-311.

  18. Rees, E.I.S., Nicholaidou, A. & Laskaridou, P., 1977. The effects of storms on the dynamics of shallow water benthic associations. In Proceedings of the 11th European Symposium on Marine Biology, Galway, Ireland, October 5-11, 1976. Biology of Benthic Organisms, (ed. B.F. Keegan, P. O'Ceidigh & P.J.S. Boaden), pp. 465-474.

  19. Strasser, M. & Pielouth, U., 2001. Recolonization pattern of the polychaete Lanice conchilega on an intertidal sandflat following the severe winter of 1995/96. Helgoland Marine Research, 55, 176-181.

  20. Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523.

  21. Wood, E.M., 1987. Subtidal Ecology. London: Edward Arnold.

  22. Yonow, N., 1989. Feeding observations on Acteon tornatilis (Linnaeus) (Opisthobranchia: Acteonidae). Journal of Molluscan Studies, 55, 97-102.

Citation

This review can be cited as:

Ager, O.E.D. 2008. Lanice conchilega Sand mason. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/species/detail/1642

Last Updated: 08/05/2008