Capitella capitata in enriched sublittoral muddy sediments

MarLIN – Marine Life Information Network
Marine Evidence-based Sensitivity Assessment (MarESA) Review

Dr Heidi Tillin

2016-06-01

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/106]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk
The polychaete *Capitella capitata* (agg.) a widely-occurring, opportunist species complex that is particularly associated with organically enriched and polluted sediments (Warren, 1977; Pearson & Rosenberg, 1978) where it may be superabundant. In very polluted/disturbed areas only *Capitella*, nematodes and occasional *Malacoceros fuliginosus* may be found whilst in slightly less enriched areas and estuaries species such as *Tubificoides*, *Cirriformia tentaculata*, *Pygospio elegans* and *Polydora ciliata* may also be found. In some areas e.g. the Tees Estuary, high numbers of the
polychaete *Ophryotrocha* may also be present. Cap may become established as a result of anthropogenic activities such as fish farming and sewerage effluent but may also occur with natural enrichment as a result of, for example, coastal bird roosts. This biotope may also occur to some extent in the intertidal and in estuaries (*JNCC, 2015*).

Depth range

0-5 m, 5-10 m, 10-20 m

Additional information

None entered.

Listed By

- none -

Further information sources

Search on:

G G G JNCC
Habitat review

Ecology

Ecological and functional relationships

- *Capitella capitata* represents a complex (Grasle & Grasle, 1976) of over ten sibling species (Gemenick & Giere, 1997) which are likely to be present in the biotope. While the species of this complex show only slight differences in adult morphology, they differ widely in ontogenetic, ecological and genetic features (Gamenick & Giere, 1997) and have distinct reproductive modes (Grasle & Grasle, 1976).
- *Capitella capitata* has been recorded in high numbers in areas of organic enrichment, where sewage inputs (Bridges, 1996; Holte & Oug, 1996; Cardell et al., 1998, Thom & Chew, 1979) and fish farms (Karakassis et al., 2000) were present. It has also been recorded in areas where sediments contain high concentrations of metals and hydrocarbons (Ward & Young, 1982; Olsgard, 1999; Petrich & Reish, 1979). The species is commonly cited as an indicator of organic enrichment, although members of the species complex vary in their response to disturbance and environmental change.
- The conditions in which *Capitella capitata* flourishes are not tolerated by many other organisms. Thus, when members of the species complex occur in high densities few other species will be present.
- *Capitella capitata* is also found in organically poor areas (Eagle & Rees, 1973) although it is unlikely to be present in such high abundance in these habitats because of competition from other species. *Capitella capitata* is a complex of opportunistic species with life history traits that enable them to rapidly colonize vacant and disturbed habitats. Thus, in areas of high disturbance, by regular dredging for instance, *Capitella capitata* may be present.
- Lugworms have been found to have a strongly negative effect on the juvenile densities of *Capitella capitata* (Flach, 1991).

Seasonal and longer term change

- Although annual variations in the composition of cryptic species within the *Capitella capitata* complex have been documented (Grasle & Grasle, 1976), very little information has been found on seasonal or temporal changes in overall *Capitella capitata* populations.
- Differences, sometimes distinctly seasonal, may be observed in the breeding period of *Capitella capitata* according to variation in local conditions, especially temperature, organic enrichment of the sediment and population density. For example, Mendez et al. (1997) suggest that *Capitella capitata* is able to produce many individuals when organic supply is high enough to feed all the population. However, variation in reproductive output is also likely to be determined by differences in composition of the *Capitella capitata* species complex, as members are known to differ in fecundity, larval dispersal ability and general abundance (Grasle & Grasle, 1978).
- In the sheltered conditions in which the biotope is found it, is unlikely that winter weather disturbance is likely to have an impact on population demographics.

Habitat structure and complexity

- The biotope has very little structural complexity with *Capitella capitata*, and the few other species that may be present, living in or on the sediment.
- Deposit feeders manipulate, sort and process sediment particles and may result in
destabilization and bioturbation of the sediment which inhibits survival of suspension feeders.

Productivity

Productivity in IMS.Cap is mostly secondary, derived from detritus and organic material. Macroalgae are absent from the biotope. The biotope occurs in nutrient rich areas, for example, close to sewage outfalls. allochthonous organic material is derived from anthropogenic activity (e.g. sewage) and natural sources (e.g. plankton, detritus). Autochthonous organic material is formed by benthic microalgae (microphytobenthos e.g. diatoms and euglenoids) and heterotrophic micro-organism production. Organic material is degraded by micro-organisms and the nutrients are recycled. Productivity in the biotope is expected to be high. Many of the characterizing species are likely to have a short lifespan, grow to maturity quickly and have multiple generations per year. Mendez et al. (1997) suggested that Capitella capitata is able to produce many individuals when organic supply is high enough to feed all the population, although the ability and timescale of response varies among members of the species complex (Grassle & Grassle, 1978).

Recruitment processes

- Warren (1976) noted that spawning of Capitella capitata occurred throughout the year in Plymouth, with all oocytes being released at a single spawning. Warren (1976) also noted that oocytes are not released into the coelomic fluid until almost fully developed and that larval development may have been completely benthonic. However, in the USA another variant of the Capitella capitata complex, Capitella species 1, has been shown to have planktonic larval development for a short time (hours to days) before settlement (Grassle & Grassle, 1974). Generally speaking, this species is considered to be iteroparous, and the larvae are brooded during part of their development within the adult tube.
- Planas & Mora (1989) have calculated that individuals from the northwest of Spain spend 2-4 weeks to change from eggs to the juvenile stage and about 3 months from juveniles to adults.
- Studies on natural populations of Capitella capitata in England show that sexual maturity is reached at about 4 months (Warren, 1976). However, in other geographical locations, sexual maturity may be reached at 3.5 months (Qian & Chia, 1994).
- Capitella species 1 larvae were attracted by a sulphide concentration of 0.1 mm to 1.0 mm, yielding higher settlement, subsequent metamorphosis and survival of settled polychaetes compared with non-sulphidic controls (Cuomo, 1985).

Time for community to reach maturity

A Capitella capitata biotope is likely to reach maturity very rapidly because the species of the complex are short lived, reaching maturity within about four months. Capitella capitata has an opportunistic life history and year round breeding. Bolam & Fernandes (2002) and Shull (1997) noted that Capitella capitata can colonize azoic sediments rapidly in relatively high numbers. Shull (1997) also demonstrated that this occurs by larval settlement, bedload transport and by burrowing. Thus, when conditions are suitable, the time for the community to reach maturity is likely to be less than six months.

Additional information

None
Preferences & Distribution

Habitat preferences

Depth Range 0-5 m, 5-10 m, 10-20 m
Water clarity preferences
Limiting Nutrients Not relevant
Salinity preferences Full (30-40 psu), Low (<18 psu), Variable (18-40 psu)
Physiographic preferences
Biological zone preferences Infralittoral
Substratum/habitat preferences Mud
Tidal strength preferences Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences Extremely sheltered, Sheltered, Very sheltered
Other preferences

Additional Information

None

Species composition

Species found especially in this biotope

Rare or scarce species associated with this biotope

Additional information

None
Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

The biotope is defined by the presence of large numbers of the polychaete *Capitella capitata* (agg.). In very polluted/disturbed areas only *Capitella*, nematodes and occasional *Malacoceros fuliginosus* may be found, whilst in slightly less enriched areas and estuaries species such as *Tubificoides*, *Cirriformia tentaculata*, *Pygospio elegans* and *Polydora ciliata* may also be found. In some areas e.g. the Tees Estuary, high numbers of the polychaete *Ophryotrocha* may also be present. The sensitivity assessments are based on *Capitella capitata* as the key defining and characterizing species, although *Tubificoides*, nematodes, and the polychaetes *Pygospio elegans*; *Polydora ciliata*; and *Cirriformia tentaculata* are considered generally as these are widespread, common species.

Resilience and recovery rates of habitat

Capitella capitata is a classic opportunist species possessing life history traits of rapid development, many reproductions per year, high recruitment and high death rates (Grassle & Grassle, 1974; McCall, 1977). Experimental studies using defaunated sediments have shown that on small scales *Capitella* can recolonize to background densities within 12 days (Grassle & Grassle, 1974; McCall, 1977). In Burry Inlet, Wales, tractor towed cockle harvesting led to a reduction in density of some species but *Capitella capitata* had almost trebled its abundance within the 56 days in a clean sandy area (Ferns *et al*., 2000).

In favorable conditions, maturity can be reached in <3 months and growth rate is estimated to be 30 mm per year. Adult potential dispersal is up to 1 km. The species complex displays reproductive variability and planktonic larvae are able to colonize newly disturbed patches but after settlement the species can produce benthic larvae brooded within the adult tube to rapidly increase the population before displacement by more competitive species (Gray, 1979). Bolam & Fernandes (2002) and Shull (1997) noted that *Capitella capitata* can colonize azoic sediments rapidly in relatively high numbers. Shull (1997) also demonstrated that this occurs by larval settlement, bedload transport and by burrowing. Thus, when conditions are suitable, the time for the community to reach maturity is likely to be less than six months.

Other species within the biotope may recolonize more slowly. Tubificid populations tend to be large and to be constant throughout the year, although some studies have noticed seasonal variations (Giere & Pfannkuche, 1982). Many species, including *Tubificoides benedii* and *Baltidrilus costata* have a two-year reproductive cycle and only part of the population reproduces each season (Giere & Pfannkuche, 1982). Populations of *Tubificoides benedii* in the Fourth Estuary have not demonstrated clear seasonality in recruitment (Bagheri & McLusky, 1982), although mature *Tubificoides benedii* (studied as *Peloscolex benedeni*) in the Thames Estuary were reported to occur in December with a maximum in late February (Hunter & Arthur, 1978), breeding worms increased from April and maximum cocoon deposition was observed in July (Hunter & Arthur, 1978). Tubificids exhibit many of the traits of opportunistic species; it is dominant, often reaching huge population densities in coastal areas that are enriched in organic matter and is often described as an 'opportunist' species adapted to rapid environmental fluctuations and stress (Giere, 2006; Bagheri & McLusky, 1982). However, unlike other opportunistic species, it has a long lifespan (a few years, Giere, 2006), a prolonged reproductive period from reaching maturity to maximum cocoon deposition, and exhibits internal fertilisation with brooding rather than pelagic dispersal. These factors mean that recolonization is slower than for some opportunistic species.
such as *Capitella capitata* and nematodes which may be present in similar habitats.

Resilience assessment. A *Capitella capitata* dominated biotope is likely to reach maturity very rapidly because the species of the complex are short-lived, reaching maturity within about four months and reproducing throughout the year. Other species within the biotope may colonize more slowly.

Hydrological Pressures

<table>
<thead>
<tr>
<th>Temperature increase (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: High C: High</td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

Capitella capitata is a cosmopolitan species in coastal marine and estuarine soft sediment systems. Grassle & Grassle (1976) used electrophoretic enzyme analysis to determine that the global population is actually made up of several genetically distinct (and apparently genetically isolated) sibling species whose distributions overlap such that local *Capitella capitata* populations actually consist of a number of co-occurring sibling species. Within the complex, tolerances may vary and local acclimation is possible. *Capitella capitata* has also been recorded in extreme environments around hydrothermal vents (Gamenick & Giere, 1997), which suggests that the species complex would be relatively tolerant to an increase in temperature.

Bamber & Spencer (1984) observed that *Tubificoides* were dominant species in an area affected by thermal discharge in the River Medway estuary. *Capitella capitata* were seasonal dominants at one station affected by heated effluent. Sediments were exposed to the passage of a temperature front of approximately 10°C between heated effluent and estuarine waters during the tidal cycles.

Experimental evaluation of the effects of combinations of varying salinities and temperature on *Capitella capitata* were carried out by Redman (1985) and Warren (1977). Redman (1985) found that length of life decreased as follows: 59 weeks at mid-temperature and salinity (15°C, 25 ppt); 43 weeks at high temperature and high salinity (18°C, 30 ppt); 33 weeks at lower temperature and high salinity (12°C, 30 ppt); 17 weeks at high temperature and low salinity (18°C, 20 ppt). Redman (1985) also found that net reproduction (Ro: the mean number of offspring produced per female at the end of the cohort) decreased as follows: 41.75 control; 36.69 under high salinity, high temperature; 2.19 high temperature, low salinity; 2.16 low temperature, high salinity. Therefore, a combination of changes in temperature and salinity may decrease the viability of the population.

Warren (1977) used individual worms collected from Warren Point (south west England) to test response to high and low temperatures. Worms were acclimated to 10°C for 10 days and subsequently heated in a water bath to experienced a rise in temperature of 1°C per 5 min. When the temperature had reached 28°C worms were removed at 0.5°C intervals and returned to a constant temperature of 10°C. The percentage mortality after 24 h was calculated. Larvae were removed from the maternal tube and tested using the same method. The experiments indicated that temperatures above 30°C were most critical; the upper lethal temperature was 31.5°C for adult worms and a little higher for the larvae.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary seasonally from 4-19°C (Huthnance, 2010). The biotope, based on the characterizing species, is considered to tolerate a 2°C increase in temperature for a year. The experimental studies by Redman (1985) suggest that changes in temperature may reduce the life-span of *Capitella capitata*, however, this effect is not considered to alter the character of the biotope as the short life cycle of this species
Capitella capitata should lead to rapid replenishment of the population. The experiments by Warren (1977) suggest that both the chronic and acute increases in temperature would not exceed the thermal tolerance of Capitella capitata. The dominance of Tubificoides spp. in sediments exposed to heated effluent suggests that this genus would be highly resistant to an increase in temperature at the pressure benchmark. Biotope resistance based on the characterizing and associated Tubificoides spp. is therefore assessed as 'High' and resilience as 'High' (by default), so the biotope is considered to be 'Not sensitive'.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

Capitella capitata is a cosmopolitan species in coastal marine and estuarine soft sediment systems. Grassle & Grassle (1976) used electrophoretic enzyme analysis to determine that the global population is actually made up of several genetically distinct (and apparently genetically isolated) sibling species whose distributions overlap such that local Capitella capitata populations actually consist of a number of co-occurring sibling species. Within the complex, tolerances may vary and local acclimation is possible. Wu et al. (1988) collected animals at seawater temperatures of -2°C that harboured mature oocytes indicating reproductive activity even under low temperatures.

Warren (1977) used individual worms collected from Warren Point (south west England) to test response to high and low temperatures. Worms were acclimated to 10°C for 10 days prior to testing. The worms were cooled in a water bath to experience a decrease in temperature of 1°C per 5 min. When the final temperature was reached, worms were removed at 0.5°C intervals and returned to a constant temperature of 10°C. The percentage mortality after 24 h was calculated. Each experiment was repeated once. Larval Capitella capitata were removed from the maternal tube and tested using the same method. Both adults and larvae were tolerant of low temperatures, 50% of the adults and 65% of the larvae surviving at -1°C.

Most littoral oligochaetes, including tubificids and enchytraeids, can survive freezing temperatures and can survive in frozen sediments (Giere & Pfannkuche, 1982). Tubificoides benedii (studied as Peloscolex benedeni) recovered after being frozen for several tides in a mudflat (Linke, 1939).

Sensitivity assessment. Typical surface water temperatures around the UK coast vary, seasonally from 4-19°C (Huthnance, 2010). The biotope, based on the characterizing species, is considered to tolerate a 2°C decrease in temperature for a year. The experiments by Warren (1977) suggest that both the chronic and acute decreases in temperature would not exceed the thermal tolerance of Capitella capitata. Biotope resistance based on the characterizing and associated Tubificoides spp. is therefore assessed as 'High' and resilience as 'High' (by default), so the biotope is considered to be 'Not sensitive'.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

The biotope occurs in full (30-35 ppt), variable (18-35 ppt) and low salinity (<18 ppt) (UNCC, 2015). Given the wide salinity tolerance, biotopes found in the middle of the range would not be sensitive to an increase from variable to full salinity. No evidence was found to assess an increase in salinity above full.
Sensitivity assessment. The biotope is considered to have high resistance to a change to full salinity from variable or low, although some mortality may occur before species acclimation. *Capitella capitata* and other associated species occur intertidally and in areas with limited water exchange such as lagoons; these habitats may experience short-term increase in salinity due to evaporation and some tolerance is therefore expected with local acclimation possible. Biotop resistance to this pressure is therefore assessed as ‘High’ and resilience as ‘High’ (by default), so the biotope is considered to be ‘Not sensitive’.

Salinity decrease (local)

<table>
<thead>
<tr>
<th>Water flow (tidal current) changes (local)</th>
<th>Medium</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
</table>

The biotope occurs in full (30-35 ppt), variable (18-35 ppt) and low salinity (<18 ppt). Given the wide salinity tolerance, biotopes found in the middle of the range would not be sensitive to an decrease from variable to low salinity.

Warren (1977) used individual worms collected from Warren Point (south-west England) to test response to reduced salinity. Individual *Capitella capitata* were acclimated to 33 ‰ for 1 week prior to exposure to salinities of 1.5, 5.5, 18 and 33 ‰. Larvae removed from the maternal tube were also tested in groups of 10. The results of tolerance tests showed that adult *Capitella capitata* acclimated at 33 ‰ were intolerant of reduced salinities below 20 ‰, all exposed adults died within 4 days when exposed at 18 ‰ and within 1 day at 9 ‰. The larvae were more tolerant, living for 10 days at 15.5 ‰ with little apparent ill effect.

Sensitivity assessment. The biotope is considered to have high resistance to a change to full salinity from variable or low, although some mortality may occur before species acclimation. *Capitella capitata* and other associated species occur intertidally and in areas with limited water exchange such as lagoons: these habitats may experience short-term decreases in salinity due to dilution by rainfall or other freshwater inputs and some tolerance is therefore expected with local acclimation possible. Biotop resistance to this pressure is therefore assessed as ‘High’ and resilience as ‘High’ (by default), so that the biotope is considered to be ‘Not sensitive’.

Capitella capitata and other associated species occur intertidally and in areas with limited water exchange such as lagoons; these habitats may experience short-term increases in salinity due to evaporation and some tolerance is therefore expected with local acclimation possible. Biotop resistance to this pressure is therefore assessed as ‘High’ and resilience as ‘High’ (by default), so that the biotope is considered to be ‘Not sensitive’.

Increases and decreases in water velocity may lead to increased erosion or deposition. The associated pressures alteration to sediment type and siltation are assessed separately. Experimental increases in near-bed current velocity were achieved over intertidal sandflats by placing flumes on the sediment to accelerate water flows (Zuhlke & Reise, 1994). The increased flow led to the erosion of up to 4 cm depth of surface sediments. No significant effect was observed on the abundance of *Capitella capitata* and numbers of *Tubificoides benedii* and *Tubificoides pseudogaster* were unaffected, as they probably avoided suspension by burrowing deeper into sediments. This was demonstrated by the decreased abundance of oligochaetes in the 0-1 cm depth layer and increased abundance of oligochaetes deeper in sediments (Zuhlke & Reise, 1994). A single storm event had a similar result with decreased abundance of oligochaetes in surficial layers, coupled with an increase in deeper sediments (Zuhlke & Reise, 1994). Although *Tubificoides* spp. can resist short-term disturbances their absence from sediments exposed to higher levels of disturbance indicate that they would be sensitive to long-term changes in sediment mobility (Zuhlke & Reise, 1994). Birtwell & Arthur (1980) reported seasonal changes in abundance in *Baltidrilus costata* (studied as *Tubifex costatus*) which they
attributed to erosion of the upper sediment layers caused by high river flows and wave action.

In the turbid waters of estuaries, where many mud habitats develop, a reduction in water flow is likely to result in a significant increase in siltation increasing the silt and clay content of the substratum. Decreases in water flow with increased siltation of fine particles are considered unlikely to alter the physical character of this habitat type as it is already found in sheltered areas where siltation occurs and where particles are predominantly fine. Reductions in waterflow occurring through the presence of trestles (for off-bottom oyster cultivation) arranged in parallel rows in the intertidal area (Goulletquer & Héral, 1997), reducing the strength of tidal currents (Nugues et al., 1996) has been observed to limit the dispersal of pseudofaeces and faeces in the water column and thus increase the natural sedimentation process by several orders of magnitude (Ottman & Sornin, 1985, summarised in Bouchet & Sauriau, 2008). As the characterizing *Capitella capitata* oligochaetes can live relatively deeply buried and in depositional environments with low water flows (based on habitat preferences) and low oxygenation, they are considered to be not sensitive to decreases in water flow.

Sensitivity assessment. Where increased or decreased water flows altered the sediment type, this could lead to sediment reclassification and thus change is assessed in the sedimentary change assessment. As muds tend to be cohesive and the surface tends to be smooth reducing turbulent flow, an increase at the pressure benchmark may not lead to increased erosion. The biotope resistance is assessed as ‘Medium’ as a precautionary assessment, resilience is assessed as ‘High’ (following restoration of usual conditions) and sensitivity is assessed as ‘Low’. The biotope is not considered to be sensitive to decreased flows due to its presence in sheltered habitats and the tolerance of *Tubificoides benedii* for low oxygen and sediment deposition.

Emergence regime changes

<table>
<thead>
<tr>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
</tr>
</thead>
</table>

'Not relevant' to subtidal biotopes.

Wave exposure changes

<table>
<thead>
<tr>
<th>High</th>
<th>High</th>
<th>Not sensitive</th>
</tr>
</thead>
</table>

This biotope occurs in habitats that are sheltered from strong wave action. Disturbance of sediment by waves may reduce oligochaete abundance (Giere, 1977) and oligochaetes may be absent from very wave exposed shores (Giere & Pfannkuche, 1982 and references therein). As this biotope occurs across three wave exposure categories; sheltered, extremely sheltered and very sheltered (JNCC, 2015), this is considered to indicate that mid-range biotopes would tolerate both an increase and decrease in wave exposure at the pressure benchmark. Resistance is therefore assessed as ‘High’ and resilience as ‘High’ by default and the biotope is considered to be ‘Not sensitive’.

Chemical Pressures

<table>
<thead>
<tr>
<th>Transition elements & organo-metal contamination</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Assessed (NA)</td>
<td>Not assessed (NA)</td>
<td>Not assessed (NA)</td>
<td></td>
</tr>
</tbody>
</table>
This pressure is **Not assessed** but evidence is presented where available.

Contamination at levels exceeding the pressure benchmark may have negative effects. High levels of organic material in intertidal muds, coupled with sub-surface anoxia, may sequester metals reducing bioavailability and hence reducing toxicity. However, sediment disturbance and exposure to oxygenated waters will render metals labile and bioavailable.

Experimental studies with various species suggest that polychaete worms are quite tolerant to heavy metals (Bryan, 1984). High numbers of *Capitella capitata* have been recorded in areas containing high metal concentrations (Petrich & Reish, 1979; Ward & Young, 1982; Olsgard, 1999), although abundance of *Capitella capitata* in Norway has also been noted to have a significant negative correlation between sediment content of Cu and abundance of the species, with an obvious reduction in abundance at approximately 900 ppm Cu (Olsgard, 1999). Some impacts on population size and reproduction of *Capitella capitata* as a result of metal pollution, both in the field and the laboratory, have been observed.

Tests of copper toxicity have been carried out on the characterizing species *Capitella capitata*. Laboratory tests carried out in water may not reflect sediment conditions where, again, copper toxicity and exposure is determined by a number of parameters including the degree to which it is adsorbed on to particles selected as food for deposit feeders. A 2-year microcosm experiment was undertaken to investigate the impact of copper on the benthic fauna of the lower Tyne Estuary (UK) by Hall & Frid (1995). During a 1-year simulated contamination period, 1 mg/l copper was supplied at 2-weekly 30% water changes, at the end of which the sediment concentrations of copper in contaminated microcosms reached 411 μg/g. Toxicity effects reduced populations of the four dominant taxa, including *Capitella capitata*. When copper dosage was ceased and clean water supplied, sediment copper concentrations fell by 50% in less than 4 days, but faunal recovery took up to 1 year, with the pattern varying between taxa. Since the copper leach rate was so rapid it is concluded that after remediation, contaminated sediments show rapid improvements in chemical concentrations, but faunal recovery may be delayed with experiments in microcosms showing faunal recovery taking up to a year.

Rygg (1985) classified *Capitella capitata* as a highly tolerant species, common at the most copper polluted stations (copper >200 mg/kg) in Norwegian fjords.

Hydrocarbon & PAH contamination

<table>
<thead>
<tr>
<th>Pressure</th>
<th>NR</th>
<th>A</th>
<th>C</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Not Assessed (NA)</td>
<td>Q: Not assessed (NA)</td>
<td>Q: Not assessed (NA)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This pressure is **Not assessed** but evidence is presented where available.

Contamination at levels exceeding the pressure benchmark may have negative effects. Suchanek (1993) reviewed the effects of oil spills on marine invertebrates and concluded that, in general, on soft sediment habitats, infaunal polychaetes, bivalves and amphipods were particularly affected. However, high numbers of *Capitella capitata* have been recorded in hydrocarbon contaminated sediments (Ward & Young, 1982; Olsgard, 1999; Petrich & Reish, 1979) and colonization of areas defaunated by high hydrocarbon levels may be rapid (Le Moal, 1980). After a major spill of fuel oil in West Virginia, *Capitella* increased dramatically alongside large increases in *Polydora ligni* and *Prionospio* sp. (Sanders et al., 1972 cited in Gray, 1979). Experimental studies adding oil to sediments have found that *Capitella capitata* increased in abundance initially, although it was rarely found in samples prior to the experiment (Hyland, 1985). *Capitella capitata* is able to withstand relatively high hydrocarbon concentrations and may even take advantage of any available space,
Capitella capitata in enriched sublittoral muddy sediments - Marine Life Information Network

caused by mortality of other species.

In Finland, in oligohaline inland waters near an oil refinery, Baltidrilus costata (as Tubifex costatus) appeared to be sensitive to oil pollution and had completely disappeared from sediments exposed to pollution and did not recolonize during a four year post-pollution period (Leppäkoski & Lindström, 1978). Tubificoides benedii appears to be more tolerant and was found in UK waters near oil refineries as the sole surviving member of the macrofauna. Populations were however apparently reduced and the worms were absent from areas of oil discharge and other studies indicate sensitivity to oiling (Giere & Pfannkuche, 1982).

Synthetic compound contamination

<table>
<thead>
<tr>
<th>synthetic compound contamination</th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
</tbody>
</table>

This pressure is Not assessed but evidence is presented where available.

Mendez (2006) showed that the effects of exposing the deposit feeding polychaete Capitella to sediment spiked with environmentally relevant concentrations of teflubenzuron (another chemical used to control infestations of sea lice) caused mortality in one species of Capitella and reduced the egestion rate of another.

Radionuclide contamination

<table>
<thead>
<tr>
<th>Radionuclide contamination</th>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
</tbody>
</table>

No evidence.

Introduction of other substances

<table>
<thead>
<tr>
<th>Introduction of other substances</th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
<tr>
<td>Q: NR</td>
<td>A: NR</td>
<td>C: NR</td>
<td></td>
</tr>
</tbody>
</table>

This pressure is Not assessed.

De-oxygenation

<table>
<thead>
<tr>
<th>De-oxygenation</th>
<th>High</th>
<th>High</th>
<th>Not sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High</td>
<td>A: High</td>
<td>C: High</td>
<td></td>
</tr>
<tr>
<td>Q: High</td>
<td>A: High</td>
<td>C: High</td>
<td></td>
</tr>
<tr>
<td>Q: High</td>
<td>A: High</td>
<td>C: High</td>
<td></td>
</tr>
</tbody>
</table>

Capitella capitata exhibits a relatively high tolerance for sediment hypoxia, hydrogen sulphide concentration, and other sediment conditions avoided by many infauna (Henriksson, 1969). Forbes & Lopez (1990) experimentally demonstrated that reduced oxygen concentrations (pO₂ = 20 mm Hg or less) led to decreased Capitella capitata growth rates and cessation of burrowing and feeding activity even when an abundance of food was provided. The authors hypothesize that animals rely solely on anaerobic metabolism once this threshold is crossed. Magnum & Van Winkle (1973) similarly observed that Capitella capitata oxygen uptake ceased when pO₂ fell to between 0-34 mm Hg. The fact that experimental worms lost body mass under these conditions supports the contention that full aerobic metabolism cannot be sustained at very low ambient oxygen conditions despite a very high affinity of Capitella capitata hemoglobin for oxygen.

Tubificoides benedii has a high capacity to tolerate anoxic conditions, its extreme oxygen tolerance is based on an unusually low respiration rate (Giere et al., 1999). Respiration rates of Tubificoides benedii measured at various oxygen concentrations showed that aerobic respiration is maintained even at very low oxygen concentrations (Giere et al., 1999). Birtwell & Arthur (1980)
showed that *Tubificoides benedii* could tolerate anoxia in the Thames Estuary (*LT₅₀ = 58.8 hours at 20°C, 26.6 hours at 25°C and 17.8 hours at 30°C in experiments with worms acclimated to 20°C)*.

Sensitivity assessments. Based on the reported tolerances for anoxia for *Capitella capitata* and *Tubificoides*, biotope resistance is assessed as ‘High’, resilience is assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’.

Nutrient enrichment

<table>
<thead>
<tr>
<th>Level</th>
<th>Q: Low A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Q: High A: High C: High</td>
<td></td>
</tr>
</tbody>
</table>

In very sheltered areas, green algae such as *Ulva* spp. may form mats on the surface of the mud during the summer months, particularly if nutrient enrichment occurs.

Sensitivity assessment. As the benchmark is relatively protective and would not lead to blooms of *Ulva* spp. (although green algae may be present on the surface layers of sediments in the summer), biotope resistance is assessed as ‘High’, resilience is assessed as ‘High’ and the biotope is considered to be ‘Not sensitive’.

Organic enrichment

<table>
<thead>
<tr>
<th>Level</th>
<th>Q: High A: High C: High</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Q: High A: High C: High</td>
</tr>
</tbody>
</table>

Benthic responses to organic enrichment have been described by Pearson & Rosenberg (1978) and Gray (1981). In general, moderate enrichment increases food supply and increases productivity and abundance. Dense *Capitella capitata* populations are frequently located in areas with greatly elevated organic content such as areas of sewage disposal and below fish farms and mussel long lines, even though eutrophic sediments are often anoxic and highly sulfidic (Gray, 1979; Tenore, 1977; Warren, 1977; Tenore & Chesney, 1985; Bridges *et al*., 1994; Haskoning, 2006; Callier *et al*., 2007).

Benthic fauna underneath floating salmon farm cages in a Scottish sea loch showed marked changes in species number, diversity, faunal abundance and biomass in the region of the fish farm (Brown *et al*., 1987). Four ‘zones’ of effect were identified: in zone 1 directly beneath and up to the edge of the cages there was an azoic zone; in zone 2, from the edge of the cages out to 8 m, the sediments were highly enriched and dominated by *Capitella capitella* and *Scolelepis fuliginosa*. Kutti *et al.* (2008) studied organic enrichment of sediments below a fish farm in a fjord system (Norway), during periods of high organic loading production was mostly by *Capitella capitata*. The threshold for increased infauna production in this deep benthic ecosystem had been reached at an annual flux of 500 g C/m² and continuous loadings at this magnitude over time might cause organic overloading of fish farm sediments.

The oligochaetes *Tubificoides benedii* and *Baltidrilus costatus* are both very tolerant of high levels of organic enrichment and often dominate sediments where sewage has been discharged or other forms of organic enrichment have occurred (Pearson & Rosenberg, 1978; Gray, 1971; McLusky *et al*., 1980).

Sensitivity assessment. Above evidence indicates that increased organic matter levels associated with aquaculture can favour *Capitella capitata* and *Tubificoides* spp., resistance is therefore considered to be ‘High’, resilience ‘High’ (by default) and the species is ‘Not sensitive’. It should be noted, however, that sensitivity is greater to gross organic enrichment levels within the spatial...
footprint of activities.

Physical Pressures

<table>
<thead>
<tr>
<th>Physical loss (to land or freshwater habitat)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical loss (to land or freshwater habitat)</td>
<td>None</td>
<td>Very Low</td>
<td>High</td>
</tr>
</tbody>
</table>

All marine habitats and benthic species are considered to have a resistance of 'None' to this pressure and to be unable to recover from a permanent loss of habitat (resilience is 'Very Low'). Sensitivity within the direct spatial footprint of this pressure is therefore 'High'. Although no specific evidence is described, confidence in this assessment is 'High' due to the incontrovertible nature of this pressure.

<table>
<thead>
<tr>
<th>Physical change (to another seabed type)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical change (to another seabed type)</td>
<td>None</td>
<td>Very Low</td>
<td>High</td>
</tr>
</tbody>
</table>

The biotope is characterized by the sedimentary habitat (JNCC, 2015), and a change to an artificial or rock substratum would alter the character of the biotope leading to reclassification and the loss of the sedimentary community including the characterizing *Capitella capitata*, other polychaetes and oligochaetes that live buried within the sediment.

Sensitivity assessment. Based on the loss of the biotope, resistance is assessed as ‘None’, recovery is assessed as ‘Very Low’ (as the change at the pressure benchmark is permanent, and sensitivity is assessed as ‘High’.

<table>
<thead>
<tr>
<th>Physical change (to another sediment type)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical change (to another sediment type)</td>
<td>None</td>
<td>Very Low</td>
<td>High</td>
</tr>
</tbody>
</table>

Capitella capitata can survive in a range of habitats including fine sands and areas with boulders, a change in sediment type was not judged to completely reduce habitat suitability for this species. An increase of sediment coarseness to sand would not exclude this species, based on published habitat preferences, but may have population level effects as habitat suitability may be reduced. Recovery would depend on the return of previous habitat conditions.

Tubificoides benedii (studied as Peloscolex benedeni) are found in a range of substratum types from sandy mixed habitats, fine sands and coarse sands (Giere & Pfannkuche, 1982 and references therein). Giere & Pfannkuche (1982) suggest that factors that correlate to substratum types such as organic matter availability, size and shape of the interstitial space between grains, the level of sediment disturbance and water content, rather than the sediment type alone are the key factors influencing distribution.

Sensitivity assessment. A change in sediment type to mixed or coarser particles could lead to changes in the density of *Capitella capitata*, other burrowing polychaetes and oligochaetes depending on species specific responses. However, the loss of the muddy sediment that characterizes this habitat would change the character of the biotope, the characterizing species, with potentially an increase in bivalves or crustaceans and is likely to lead to reclassification. Based on a change in character, the biotope is considered to have ‘No’ resistance to this pressure,
resilience is assessed as 'Very Low' as a change at the pressure benchmark is permanent and biotope sensitivity is assessed as 'High'.

<table>
<thead>
<tr>
<th>Habitat structure changes - removal of substratum (extraction)</th>
<th>None</th>
<th>High</th>
<th>Medium</th>
</tr>
</thead>
</table>

Sedimentary communities are likely to be highly intolerant of substratum removal, which will lead to partial or complete defaunation, exposure of underlying sediment which may be anoxic and/or of a different character or bedrock and lead to changes in the topography of the area (Dernie et al., 2003). Any remaining species, given their new position at the sediment/water interface, may be exposed to conditions to which they are not suited. Removal of 30 cm of surface sediment will remove the polychaete and oligochaete community and other species present in the biotope. Recovery of the biological assemblage may take place before the original topography is restored, if the exposed, underlying sediments are similar to those that were removed. Hydrodynamics and sedimentology (mobility and supply) influence the recovery of soft sediment habitats (Van Hoey et al., 2008).

Sensitivity assessment. Extraction of 30 cm of sediment will remove the characterizing biological component of the biotope. Resistance is assessed as 'None' and biotope resilience is assessed as 'High’”. Biotope sensitivity is therefore 'Medium'.

<table>
<thead>
<tr>
<th>Abrasion/disturbance of the surface of the substratum or seabed</th>
<th>Medium</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Medium C: Medium</td>
<td>Q: High A: Medium C: High</td>
<td>Q: High A: Medium C: Medium</td>
<td></td>
</tr>
</tbody>
</table>

Capitella capitata is a soft bodied, relatively fragile species inhabiting mucus tubes close to the sediment surface. Abrasion and compaction of the surficial layer may damage individuals. *Capitella capitata* and *Pygospio elegans* have been categorised through literature and expert reviews as AMBI fisheries Group IV- ‘A second-order opportunistic species, which are sensitive to fisheries in which the bottom is disturbed. Their populations recover relatively quickly however and benefit from the disturbance, causing their population sizes to increase significantly in areas with intense fisheries’ (Gittenberger & Van Loon, 2011). Chandrasekara & Frid (1996) found that in intertidal muds, along a pathway heavily used for five summer months (ca 50 individuals a day), some species including *Capitella capitata* and *Scoloplos armiger* reduced in abundance. Bonsdorff & Pearson (1997) found that sediment disturbance forced *Capitella capitata* deeper into the sediment, although the species was able to burrow back through the sediment to the surface again.

Tubificoides benedii can be relatively deeply buried and could avoid direct exposure to abrasion although sediment disturbance and compaction could damage these soft-bodied species. Oligochaetes in general are not found in high abundances in sediments with high levels of disturbance from wave action.

Sensitivity assessment. Abrasion may damage or kill a proportion of the population of the characterizing *Capitella capitata* and associated species. *Tubificoides* spp. that are generally buried more deeply within sediments are likely to be more resistant than species such as *Pygospio elegans* that inhabit fragile tubes that extend above the sediment surface. Biotope resistance is assessed as 'Medium' and resilience as 'High', so sensitivity is assessed as 'Low'.
Penetration or disturbance of the substratum subsurface

Penetration or disturbance of the substratum subsurface

Rabaut et al. (2008) found that beam trawling on intertidal Lanice conchilega reefs reduced the abundance of Capitella capitata. Ferns et al. (2000), however, found that tractor-towed cockle harvesting had little effect on Capitella capitata, but species that are present at the surface were more badly affected. The tractor dredging removed 83% of Pygospio elegans (initial density 1850/m²). These results are supported by work by Moore (1991) and Rostron (1995) who also found that cockle dredging can result in reduced densities of some polychaete species, including Pygospio elegans.

Whomersley et al. (2010) conducted experimental raking on intertidal mudflats at two sites (Creeksea Crouch Estuary, England and Blackness lower Forth Estuary, Scotland), where Tubificoides benedii were dominant species. For each treatment, 1 m² plots were raked twice to a depth of 4 cm (using a garden rake). Plots were subject to either low intensity treatments (raking every four weeks) or high (raking every two weeks). The experiment was carried out for 10 months at Creeksea and a year at Blackness. The high and low raking treatments appeared to have little effect on Tubificoides benedii (Whomersley et al., 2010). These results are supported by observations that two experimental passes of an oyster dredge that removed the sediment to a depth of between 15-20 cm did not significantly affect Tubificoides benedii (EMU, 1992).

Sensitivity assessment. Capitella capitata is present in the surface layers of sediment and may be damaged, displaced or killed by penetration and disturbance of the sediment. Resistance is assessed as ‘Low’ and resilience as ‘High’, so sensitivity is assessed as ‘Low’.

Changes in suspended solids (water clarity)

Changes in suspended solids (water clarity)

Estuaries, where this biotope is often found, can be naturally turbid systems due to sediment resuspension by wave and tide action and inputs of high levels of suspended solids, transported by rivers. The level of suspended solids depends on a variety of factors including: substrate type, river flow, tidal height, water velocity, wind reach/speed and depth of water mixing (Parr et al., 1998). Transported sediment including silt and organic detritus can become trapped in the system where the river water meets seawater. Dissolved material in the river water flocculates when it comes into contact with the salt wedge pushing its way upriver. These processes result in elevated levels of suspended particulate material with peak levels confined to a discrete region (the turbidity maximum), usually in the upper-middle reaches, which moves up and down the estuary with the tidal ebb and flow. Intertidal mudflats depend on the supply of particulate matter to maintain mudflats and the associated biological community is exposed naturally to relatively high levels of turbidity/particulate matter.

Sensitivity assessment. The biological assemblage characterizing this biotope is infaunal and consists of sub-surface deposit feeders. Increased suspended solids are unlikely to have an impact and resistance is assessed as ‘High’ and resilience as ‘High’, so the biotope is considered to be ‘Not sensitive’. A reduction in suspended solids may reduce deposition and supply of organic matter, resistance to a decrease is therefore assessed as ‘Medium’, as a shift between deposition and erosion could result in the net loss of surficial sediments. A reduction in organic matter as suspended solids could also reduce production within this biotope. Resistance is assessed as
Subtidal mudflats occur in sheltered environments and, in general, are accreting environments meaning that deposition rather than erosion is the dominant process, this means that the assemblages present (primarily deposit feeders) are adapted to natural levels of siltation through life history traits and can withstand burial (by repositioning in sediment or similarly extending tubes or feeding and respiration structures above the sediment surface). Capitella capitata has been categorised through expert and literature review, as AMBI sedimentation Group IV – 'A second-order opportunistic species, insensitive to higher amounts of sedimentation. Although they are sensitive to strong fluctuations in sedimentation, their populations recover relatively quickly and even benefit. This causes their population sizes to increase significantly in areas after a strong fluctuation in sedimentation' (Gittenberger & van Loon, 2011). The effects of siltation will depend on the amount and rate that particles are added. Capitella capitata is sedentary and adults are judged unlikely to have any mechanism to escape from large inputs. A deep covering of sediment will prevent feeding. Where inputs are at low rates and similar to background sediments then adults may be able to extend tubes to reach the surface to feed.

Pygospio elegans is limited by high sedimentation rates (Nugues et al., 1996) and the species does not appear to be well adapted to oyster culture areas where there are high rates of accumulation of faeces and pseudo faeces (Sornin et al., 1983; Deslous-Paoli et al., 1992; Mitchell, 2006; Bouchet & Sauriau, 2008).

Tubificoides live relatively deeply buried and can tolerate periods of low oxygen that may occur following the deposition of a fine layer of sediment. In addition, the presence of this species in areas experiencing deposition, such as estuaries, indicate that this species is likely to have a high tolerance to siltation events. Tubificoides spp. showed some recovery through vertical migration following the placement of a sediment overburden 6cm thick on top of sediments (Bolam, 2011).

Whomersley et al. (2010) experimentally buried plots on intertidal mudflats at two sites (Creeksea Crouch Estuary, England and Blackness lower Forth Estuary, Scotland), where Tubificoides benedii were dominant species. For each treatment, anoxic mud was spread evenly to a depth of 4 cm on top of each treatment plot. The mud was taken from areas adjacent to the plots, and was obtained by scraping off the surface oxic layer and digging up the underlying mud from approximately 20 cm depth. Plots were subject to either low intensity treatments (burial every four weeks) or high (burial every two weeks). The experiment was carried out for 10 months at Creeksea and a year at Blackness. At Creeksea numbers of Tubificoides benedii increased in both burial treatments until the third month (high burial) and sixth month (low burial). At Blackness increased numbers of Tubificoides benedii were found in both burial treatments after one month (Whomersley et al., 2010).

Sensitivity assessment. Biotope resistance to siltation based on Capitella capitata is judged to be 'Low' with regard to the rapid addition of silts to a depth of <5 cm. Resilience is assessed as 'High' recovery is predicted to be rapid. Sensitivity is therefore assessed as 'Low'. At lower levels of siltation, sensitivity will be likely to be lower.
Smothering and siltation rate changes (heavy)

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: NR C: NR</td>
<td>Q: High A: Low C: High</td>
<td>Q: Low A: Low C: Low</td>
</tr>
</tbody>
</table>

The pressure benchmark (30 cm deposit) represents a significant burial event and the deposit may remain for some time in a sheltered mudflat. *Capitella capitata* populations are likely to be significantly impacted. Some impacts on *Tubificoides benedii* and other oligochaetes may occur and it is considered unlikely that significant numbers of the population could reposition, based on (Bolam, 2011). Placement of the deposit will, therefore, result in a defaunated habitat until the deposit is recolonized. Biotope resistance is therefore assessed as 'Low' as some removal of deposit and vertical migration through the deposit may occur. Resilience is assessed as 'High' as migration and recolonization of *Capitella capitata* and oligochaetes is likely to occur within two years, biotope sensitivity is therefore assessed as 'Low'.

Litter

<table>
<thead>
<tr>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

Not assessed.

Electromagnetic changes

<table>
<thead>
<tr>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
</tr>
</thead>
</table>

No evidence.

Underwater noise changes

<table>
<thead>
<tr>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
</tr>
</thead>
</table>

'Not relevant'.

Introduction of light or shading

<table>
<thead>
<tr>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
<th>Not relevant (NR)</th>
</tr>
</thead>
</table>

As the characterizing biological assemblage occurs within the sediment and can be deeply buried (to 10 cm or more), an increase in light or shading is considered 'Not relevant'. However, shading may reduce the microphytobenthos component of this infralittoral biotope. Mucilaginous secretions produced by these algae may stabilize fine substrata (Tait & Dipper, 1998). Shading will prevent photosynthesis leading to death or migration of sediment microalgae, which may alter sediment cohesion and food supply to higher trophic levels. As this biotope occurs in areas of high turbidity, where light penetration may be limited, an increase in shading is not considered to significantly alter the character of the habitat.

Barrier to species movement

<table>
<thead>
<tr>
<th>High</th>
<th>High</th>
<th>Not sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: NR C: NR</td>
<td>Q: High A: High C: High</td>
<td>Q: Low A: Low C: Low</td>
</tr>
</tbody>
</table>

The key characterizing species *Capitella capitata* and the associated species *Pygospio elegans* are capable of both benthic and pelagic dispersal. In the sheltered waters where this biotope occurs, with reduced water exchange, in-situ reproduction may maintain populations rather than long-range pelagic dispersal. As the tubificid oligochaetes that characterize this biotope have benthic
dispersal strategies (via egg cocoons laid on the surface (Giere & Pfannkuche, 1982)), water transport is not a key method of dispersal over wide distances. The biotope (based on the biological assemblage) is considered to have ‘High’ resistance to the presence of barriers that lead to a reduction in tidal excursion, resilience is assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’.

Death or injury by collision | Not relevant (NR) | Not relevant (NR) | Not relevant (NR)
---|---|---|

'Not relevant' to seabed habitats. NB. Collision by grounding vessels is addressed under 'surface abrasion'.

Visual disturbance | Not relevant (NR) | Not relevant (NR) | Not relevant (NR)
---|---|---|

Visual disturbance is not considered relevant to this biotope.

Biological Pressures

<table>
<thead>
<tr>
<th>Genetic modification & translocation of indigenous species</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td></td>
</tr>
</tbody>
</table>

Key characterizing species within this biotope are not cultivated or translocated. This pressure is therefore considered ‘Not relevant’ to this biotope group.

<table>
<thead>
<tr>
<th>Introduction or spread of invasive non-indigenous species</th>
<th>None</th>
<th>Very Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Low C: NR</td>
<td>Q: Low A: NR C: NR</td>
<td>Q: Low A: Low C: Low</td>
<td></td>
</tr>
</tbody>
</table>

No evidence found. Invasion by the slipper limpet *Crepidula fornicata* may lead to biotope reversion to SS.SMx.SMxVS.CreMed suggesting high intolerance as the original biotope would be lost. Species richness might decline as *Crepidula* may dominate the seabed. Experimental relaying of mussels on intertidal fine sand sediments increased fine sediment proportions and led to colonization by *Capitella capitata* (Ragnarsson & Rafaelli, 1999), so that sediment modification by bivalves may not render habitats unsuitable for *Capitella capitata*.

Sensitivity assessment. Reclassification of the biotope following invasion would result in loss of the biotope, resistance is therefore assessed as ‘None’, as recovery will not occur until the invasive species is eradicated, recovery is assessed as ‘Very Low’ and biotope sensitivity is ‘High’.

<table>
<thead>
<tr>
<th>Introduction of microbial pathogens</th>
<th>High</th>
<th>High</th>
<th>Not sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: NR C: NR</td>
<td>Q: High A: High C: High</td>
<td>Q: Low A: Low C: Low</td>
<td></td>
</tr>
</tbody>
</table>

Marine oligochaetes host numerous protozoan parasites without apparent pathogenic effects even at high infestation levels (Giere & Pfannkuche, 1982 and references therein).
Sensitivity assessment. Based on the lack of evidence for mass mortalities in *Capitella capitata* and oligochaetes from microbial pathogens, resistance is assessed as ‘High’ and resilience as ‘High’ (by default), so that the biotope is assessed as ‘Not sensitive’.

Removal of target species
- Not relevant (NR)
 - Q: NR A: NR C: NR

No characterizing species within the biotope are targeted by commercial or recreational fishers or harvesters. This pressure is therefore considered ‘Not relevant’.

Removal of non-target species
- Low
 - Q: Low A: NR C: NR
- High
 - Q: High A: Low C: High
- Low
 - Q: Low A: Low C: Low

Incidental removal of the characterizing species would alter the character of the biotope and the delivery of ecosystem services such as secondary production and bioturbation. Populations of oligochaetes provide food for macroinvertebrates fish and birds. For example, up to 67% of flounder and plaice stomachs examined from the Medway Estuary (UK) (Van den Broek, 1978) contained the remains of *Tubificoides benedii* (studied as *Peloscolex benedeni*) and shrimps which in turn support higher trophic levels (predatory birds and fish). For some migratory birds, the characterizing species *Tubificoides benedii* can form an important part of the diet during winter (Bagheri & McLusky, 1984). Polychaetes and crustaceans are also predators of oligochaetes and may significantly reduce numbers (Giere & Pfannkuche, 1982 and references therein). The loss of the oligochaete population could, therefore, impact other trophic levels.

Sensitivity assessment. Removal of the characterizing species would alter the character of the biotope. Resistance is therefore assessed as ‘Low’ and resilience as ‘High’, so sensitivity is categorized as ‘Low’.
Bibliography

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/.

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/.

Ward, T.J. & Young, P.C., 1982. Effects of sediment trace metals and particle size on the community structure of epibenthic seagrass fauna near a lead smelter, South Australia. Marine Ecology Progress Series, 9, 136-146.

