Spisula subtruncata and **Nephtys hombergii** in shallow muddy sand

MarLIN – Marine Life Information Network
Marine Evidence–based Sensitivity Assessment (MarESA) Review

Dr Heidi Tillin
2016-07-01

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1132]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available [here](https://www.marlin.ac.uk). Based on a work at www.marlin.ac.uk
Summary

UK and Ireland classification

EUNIS 2008 A5.244 Spisula subtruncata and Nephtys hombergii in shallow muddy sand
JNCC 2015 SS.SSa.IMuSa.SsubNhom Spisula subtruncata and Nephtys hombergii in shallow muddy sand
JNCC 2004 SS.SSa.IMuSa.SsubNhom Spisula subtruncata and Nephtys hombergii in shallow muddy sand
1997 Biotope

Description

In shallow non-cohesive muddy sands, in fully marine conditions, a community characterized by the bivalve Spisula subtruncata and the polychaete Nephtys hombergii may occur. The sediments in which this community is found may vary with regard silt content but they generally have less than...
20% silt/clay and in some areas may contain a degree of shell debris. This biotope falls somewhere between SSA.FfabMag and SSA.AalbNuc with regard sediment type (i.e. somewhat muddier than SSA.FfabMag and less muddy than SSA.AalbNuc) and may have species in common with both. As a result, other important species in this community include Abra alba, Fabulina fabula spp. and Mysella bidentata spp. In addition, Diastylis rathkei/typical, Philine aperta (in muddier sediments), Ampelisca spp., Ophiura albida, Phaxas pellucidus and occasionally Bathyporeia spp, may also be important, although this is not clear from the data available. In areas of slightly coarser, less muddy sediment Spisula solida or Spisula elliptica may appear occasionally in this biotope. Abundances of Spisula subtruncata in this biotope are often very high and distinguish it from other closely related biotopes. Extensive areas of this community to the north east of the Dogger Bank were recorded in the 1950s, but these seem to have declined since then (Kroncke 1990). More information is required with regard the status of this biotope (JNCC, 2015).

Depth range
0-5 m, 5-10 m, 10-20 m, 20-30 m

Additional information
-

Listed By
- none -

Further information sources

Search on:

https://www.marlin.ac.uk/habitats/detail/1132
Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

The initial project scoping exercise to update the existing MarLIN assessments with the MarESA approach grouped biotopes where sensitivities were likely to be similar. The biotopes SS.SSa.IMuSa.FfabMag; SS.SSa.IMuSa.SsubNhom; SS.SSa.CFiSa.EpusOborApri; SS.SSa.CFiSa.ApriBatPo and SS.SSa.CMuSa.AalbNuc represent a continuum along depth and sediment gradients and were grouped as their responses to pressures are probably similar, given the presence of similar species and functional groups. These biotopes have been reviewed as a group, although the resultant reviews and sensitivity assessments are presented separately for each biotope. The specific biotope assessments have been updated with information on characterizing species, where this was readily available, however, the assessments are relatively generic for this group.

Resilience and recovery rates of habitat

This biotope may recover from impacts via in-situ repair of damaged individuals, migration of adults of mobile species such as the errant polychaetes Glycera lapidum and Nephtys cirrosa, amphipods and urchins. Adults may also be transported in the water column following washout from sediments. Storm events may lead to the displacement of large numbers of individuals. Most bivalves will be able to reposition within the sediment and some, such as Glycymeris glycymeris, are also able to move and to relocate following displacement and disturbance (Thomas, 1975). For immobile species or where depopulation has occurred over a large area, recovery will depend on recolonization by pelagic larvae.

A large number of species are recorded in the biotopes within the assessed group and there may be large natural variation in species abundance over the course of a year or between years (see Dauvin, 1985 for Timoclea ovata; Fahy et al., 2003 for Spisula solida; Sardá et al., 1999 multispecies). These variations may not alter the biotope classification where habitat parameters, such as sediment type, remain as described in the classification and many of the characteristic species groups are present. For many of the bivalve species studied, recruitment is sporadic and depends on a successful spat fall but recruitment by the characterizing polychaetes may be more reliable. However, due to the large number of pre- and post-recruitment factors such as food supply, predation, and competition, recruitment of venerid bivalves and other species is unpredictable (Olafsson et al., 1994).

The life history characteristics of the characterizing bivalves and polychaetes and other species were reviewed. Little information was found for Moerella spp. Morton (2009) noted that despite the wide global distribution of the characterizing venerid bivalve, Timoclea ovata, little was known about its anatomy or basic biology. This appears to be the case for many of the other characterizing venerid bivalves and much more information was available for the polychaete species that occur in this biotope. Two linked factors that may explain this are the greater research effort in soft sediments with higher mud contents where sampling is easier than in coarse sediments. Venerid bivalves are also considered to be under-represented in grab samples (JNCC, 2015), so less is known of their occurrence on ecological and impact gradients.

The venerid bivalves in the biotope reach sexual maturity within two years, spawn at least once a year and have a pelagic dispersal phase (Guillou & Sauriau, 1985; Dauvin, 1985). No information was found concerning number of gametes produced, but the number is likely to be high as with
other bivalves exhibiting planktotrophic development (Olafsson et al., 1994). Recruitment in venerids is likely to be episodic, some species such as Chamelea gallina may be long-lived (11-20 years). The long lifespan & slow growth rate suggest that this group is likely to take several years, even if initial recolonization were to occur rapidly (MES 2010). Dauvin (1985) reported that Timoclea ovata (studied as Venus ovata) recruitment occurred in July-August in the Bay of Morlaix. However, the population showed considerable pluriannual variations in recruitment, which suggests that recruitment is patchy and/or post settlement processes are highly variable.

The species that are present in the biotope can be broadly characterized as either opportunist species that rapidly colonize disturbed habitats and increase in abundance, or species that are larger and longer-lived and that may be more abundant in an established, mature assemblage.

Species with opportunistic life strategies (small size, rapid maturation and short lifespan of 1-2 years with production of large numbers of small propagules), include the bivalve Spisula solida; and the polychaetes Spirophanes bombyx, Spio filicornis, and Chaetozone setosa; also cumaceans; barnacles Balanus crenatus; and the tube worm Spirobranhchus (formerly Pomatoceros) lamarckii. These are likely to recolonize disturbed areas first, although the actual pattern will depend on recovery of the habitat, season of occurrence and other factors. The recovery of bivalves that recruit episodically and the establishment of a representative age-structured population for larger, longer lived organisms may require longer than two years. In an area that had been subjected to intensive aggregate extraction for 30 years, abundances of juvenile and adults Nephtys cirrosa had greatly increased three years after extraction had stopped (Mouleaaert & Hostens, 2007). An area of sand and gravel subject to chronic working for 25 years had not recovered after 6 years when compared to nearby reference sites unimpacted by operations (Boyd et al., 2005). The characterizing Moerella (now Tellina) spp. are a relatively long-lived genus (6-10 years; MES, 2008, 2010) and the number of eggs is likely to be fewer than genera that have planktotrophic larvae. Similarly, Chamelea sp. and Dosinia sp. are long lived (11-20 years and up to 20 years, respectively; MES, 2008, 2010). While recruitment may be rapid, restoration of the biomass by growth of the colonizing individuals is likely to take many years.

Other longer lived species that may represent a more developed and stable assemblage include the polychaete Owenia fusiformis which lives for 4 years and reproduces annually (Gentil et al., 1990). Nephtys species and Glycera spp. are also longer-lived. Glycera are monotelic having a single breeding period towards the end of their life but may recover through migration and may persist in disturbed sediments through their ability to burrow (Klawe & Dickie, 1957). Glycera spp. have a high potential rate of recolonization of sediments, but the relatively slow growth-rate and long lifespan suggests that recovery of biomass following initial recolonization by post-larvae is likely to take several years (MES, 2010). Following dredging of subtidal sands in summer and autumn to provide material for beach nourishment in the Bay of Blanes, (north-west Mediterranean sea, Spain) recovery was tracked by Sardá et al. (2000). Recolonization in the dredged habitats was rapid, with high densities of Spisula subtruncata and Owenia fusiformis in the spring following dredging, although most of these recruits did not survive summer. However, Glycera spp. and Protodorvillea kefersteini had not recovered within two years (Sardá et al., 2000).

A number of studies have tracked recovery of sand and coarse sand communities following disturbance from fisheries (Gilkinson et al., 2005) and aggregate extraction (Boyd et al., 2005). The available studies confirm the general trend that, following severe disturbance, habitats are recolonized rapidly by opportunistic species (Pearson & Rosenberg, 1978). Experimental deployment of hydraulic clam dredges on a sandy seabed on Banquereau, on the Scotian Shelf, eastern Canada showed that within 2 years of the impact, polychaetes and amphipods had

https://www.marlin.ac.uk/habitats/detail/1132
increased in abundance after 1 year (Gilkinson et al., 2005). Two years after dredging, abundances of opportunistic species were generally elevated relative to pre-dredging levels while communities had become numerically dominated (50-70%) by Spiochesus bombyx (Gilkinson et al., 2005). Van Dalfsen et al. (2000) found that polychaetes recolonized a dredged area within 5-10 months (reference from Boyd et al., 2005), with biomass recovery predicted within 2-4 years. The polychaete and amphipods are therefore likely to recover more rapidly than the characterizing bivalves and the biotope classification may revert, during recovery, to a polychaete dominated biotope.

Sardá et al. (1999) tracked annual cycles within a Spisula community in Bay of Blanes (north west Mediterranean sea, Spain) for 4 years. Macroinfaunal abundance peaked in spring, decreased sharply throughout the summer, with low density in autumn and winter. The observed trends were related to a number of species, including many that characterize this biotope such as Owenia fusiformis; Glyceria sp.; Protodorvillea kefersteini; Mediomastus fragilis; Spisula subtruncata; and Branchiostoma lanceolatum. The Spisula subtruncata populations were dominated by juveniles, with high abundances in spring followed by declines in summer, with very few survivors 3 months after recruitment. Inter-annual differences in recruitment of Owenia fusiformis were apparent and this species showed spring/summer increases. Mediomastus fragilis also had spring population peaks but more individuals persisted throughout the year. Protodorvillea kefersteini exhibited a similar pattern with spring recruitment and a population that persisted throughout the year.

Where impacts also alter the sedimentary habitat, recovery of the biotope will also depend on recovery of the habitat to the former condition to support the characteristic biological assemblage. Recovery of sediments will be site-specific and will be influenced by currents, wave action and sediment availability (Desprez, 2000). Except in areas of mobile sands, the process tends to be slow (Kenny & Rees, 1996; Desprez, 2000 and references therein). Boyd et al. (2005) found that in a site subject to long-term extraction (25 years), extraction scars were still visible after six years and sediment characteristics were still altered in comparison with reference areas, with ongoing effects on the biota.

Resilience assessment. Where resistance is ‘None’ or ‘Low’ and an element of habitat recovery is required, resilience is assessed as ‘Medium’ (2-10 years), based on evidence from aggregate recovery studies in similar habitats including Boyd et al. (2005). Where resistance of the characterizing species is ‘Low’ or ‘Medium’ and the habitat has not been altered, resilience is assessed as ‘High’ as, due to the number of characterizing species and variability in recruitment patterns, it is likely that the biotope would be considered representative and hence recovered after two years although some parameters such as species richness, abundance and biotopes may be altered.

NB: The resilience and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, the frequency (repeated disturbances versus a one-off event) and the intensity of the disturbance. Recovery of impacted populations will always be mediated by stochastic events and processes acting over different scales including, but not limited to, local habitat conditions, further impacts and processes such as larval-supply and recruitment between populations. Full recovery is defined as the return to the state of the habitat that existed prior to impact. This does not necessarily mean that every component species has returned to its prior condition, abundance or extent but that the relevant functional components are present and the habitat is structurally and functionally recognisable as the initial habitat of interest. It should be noted that the recovery rates are only indicative of the recovery potential.
Davenport & Davenport (2005) demonstrated that the limits of thermal tolerance to high and low temperatures reflect distribution of intertidal macroinvertebrate species. Species that occur highest on the shore are more tolerant of a wider range of temperatures than species that occurred low on the shore or subtidally. As subtidal biotopes are less exposed to temperature fluctuations, the characterizing species may be less able to tolerate temperature fluctuations.

No direct evidence was found to support assessment of this pressure. Very few laboratory studies have been carried out on the characterizing species and the assessment relies on information on larvae in the plankton or monitoring of settlement and records of species distribution. Species from different areas may be acclimated to prevailing conditions and life histories may vary, e.g. *Chamelea gallina* longevity varies between populations (Gaspar et al., 2004) as does the longevity of *Amphpholis squamata* in different locations and habitats (Emson et al., 1989).

Kröncke et al. (1998) examined long-term changes in the macrofauna in the subtidal zone off Norderney, one of the East Frisian barrier islands. The analysis suggested that macrofauna were severely affected by cold winters whereas storms and hot summers have no impact on the benthos. A long-term increase in temperature might cause a shift in species composition. Long-term analysis of the North Sea pelagic system has identified yearly variations in larval abundance of Echinodermata, Arthropoda, and Mollusca larvae that correlate with sea surface temperatures. Larvae of benthic echinoderms and decapod crustaceans increased after the mid-1980s, coincident with a rise in North Sea sea surface temperature, whereas bivalve larvae underwent a reduction (Kirby et al., 2008). An increase in temperature may alter larval supply and in the long-term, and over large spatial scales, may result in changes in community composition.

Temperature cues influence the timing of gametogenesis and spawning in several species present in the biotope. Seasonal variations in reproductive cycle of *Spisula solida* were studied at a site off Vilamoura, southern Portugal. The onset of spawning took place in February when the seawater temperature began to increase and spawning ended in May. It is possible that *Spisula solida* does not spawn at a definite temperature, rather responding to the increase in seawater temperature (Gaspar & Monteiro, 1999). Many polychaete species including *Mediomastus fragilis*, *Owenia fusiformis* and *Protodorvillea kefersteini* also show spring/early summer recruitment (Sardá et al., 1999).

Sensitivity assessment. Little evidence was available to assess this pressure. Assemblages in fine sands and muddy sands contain many of the characterizing species occur in the Mediterranean (see resilience section Sardá et al., 1999; Sardá et al., 2000), where temperatures are higher than experienced in the UK. It is considered likely, therefore, that a chronic change in temperature at the pressure benchmark would be tolerated by species with a wide distribution or that some species or groups of species would be resistant. An acute change may exceed thermal tolerances or lead to spawning or other biological effects. These effects may be sub-lethal or result in the removal of only a proportion of less tolerant species. Biotope resistance is therefore assessed as ‘Medium’ and resilience is assessed as ‘High’. Biotope sensitivity is therefore assessed as ‘Low’.

<table>
<thead>
<tr>
<th>Hydrological Pressures</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature increase</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>(local)</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
</tr>
</tbody>
</table>
Spisula subtruncata and Nephtys hombergii in shallow muddy sand - Marine Life Information Network

Temperature decrease (local)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Resistance</th>
<th>Recovery</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
</tr>
<tr>
<td>High</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
</tr>
<tr>
<td>Low</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
</tr>
</tbody>
</table>

Davenport & Davenport (2005) demonstrated that the limits of thermal tolerance to high and low temperatures reflect the distribution of intertidal macroinvertebrate species. Species that occur highest on the shore are more tolerant of a wider range of temperatures than species that occurred low on the shore or subtidally. As subtidal biotopes are less exposed to temperature fluctuations the characterizing species may be less able to tolerate temperature fluctuations.

Long-term analysis of the North Sea pelagic system has identified yearly variations in larval abundance of Echinodermata, Arthropoda, and Mollusca larvae that correlate with sea surface temperatures. Larvae of benthic echinoderms and decapod crustaceans increased after the mid-1980s, coincident with a rise in North Sea sea surface temperature, whereas bivalve larvae underwent a reduction (Kirby et al., 2008). A decrease in temperature may alter larval supply and in the long-term, and over large spatial scales, may result in changes in community composition.

Sensitivity assessment. Many of the characterizing species are found in more northern waters than the UK and may be adapted to colder temperatures. Plankton studies suggest that colder waters may favour bivalve larvae. An acute change may exceed thermal tolerances or lead to spawning or other biological effects. These effects may be sub-lethal or remove only a proportion of less tolerant species. Biotope resistance is therefore assessed as ‘Medium’ and resilience is assessed as ‘Low’. Biotope sensitivity is therefore assessed as ‘Low’.

Salinity increase (local)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Resistance</th>
<th>Recovery</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Q: High A: Low C: NR</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Low</td>
</tr>
<tr>
<td>Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Low</td>
</tr>
</tbody>
</table>

The assessed biotope occurs in full salinity (30-35 ppt) (JNCC, 2015). A change at the pressure benchmark therefore refers to a change to full salinity. No directly relevant evidence was found to assess this pressure. A study from the Canary Islands indicates that exposure to high salinity effluents (47-50 psu) from desalination plants alter the structure of biological assemblages, reducing species richness and abundance (Riera et al., 2012). Bivalves and amphipods appear to be less tolerant of increased salinity than polychaetes and were largely absent at the point of discharge. Polychaetes, including species or genera that occur in this biotope, such as Spio filicornis, Glycerca spp. and Lumbrineris sp., were present at the discharge point (Riera et al., 2012). The ophiuroid Amphipholis squamata has been recorded in areas of high salinity (52-55 ppt) in the Arabian Gulf (Price, 1982), indicating local acclimation may be possible.

Sensitivity assessment. High saline effluents alter the structure of biological assemblages. Polychaete species may be more tolerant than bivalves so that an increase in salinity may lead to a shift in community composition. Biotope resistance is therefore assessed as ‘Low’ and resilience as ‘Medium’, as bivalve recovery may depend on episodic recruitment. Biotope sensitivity is assessed as ‘Medium’.

Salinity decrease (local)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Resistance</th>
<th>Recovery</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Q: Low A: NR C: NR</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Low</td>
</tr>
<tr>
<td>Medium</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Low</td>
<td>Q: High A: Low C: Low</td>
</tr>
</tbody>
</table>

Species tolerances to decreases in salinity are likely to vary but changes in sensitivity are likely to result in changes in species richness and abundance with some shift in species composition. Biotope resistance is therefore assessed as ‘Low’ and resilience as ‘Medium’, as
bivalve recovery may depend on episodic recruitment. Biotope sensitivity is assessed as ‘Medium’.

<table>
<thead>
<tr>
<th>Water flow (tidal current) changes (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Low C: NR</td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

This biotope is recorded in areas where tidal flow varies between moderately strong (0.5-1.5 m/s) and weak (>0.5 m/s) (JNCC, 2015). Sands are less cohesive than mud sediments and a change in water flow at the pressure benchmark may alter sediment transport patterns within the biotope. Hjulström (1939), concluded that fine sand (particle diameter of 0.3-0.6 mm) was easiest to erode and required a mean velocity of 0.2 m/s. Erosion and deposition of particles greater than 0.5 mm require a velocity > 0.2 m/s to alter the habitat. The topography of this habitat is shaped by currents and wave action that influence the formation of ripples in the sediment. Specific fauna may be associated with troughs and crests of these bedforms. may form following an increase in water flow, or disappear following a reduction in flow.

Sensitivity assessment. This biotope occurs in areas subject to moderately strong water flows and these are a key factor maintaining the clean sand habitat. Changes in water flow may alter the topography of the habitat and may cause some shifts in abundance. However, a change at the pressure benchmark (increase or decrease) is unlikely to affect biotopes that occur in mid-range flows and biotope resistance is therefore assessed as 'High' and resilience is assessed as 'High' so that the biotope is considered to be 'Not sensitive'.

<table>
<thead>
<tr>
<th>Emergence regime changes</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NR A: NR C: NR</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
</tbody>
</table>

Changes in emergence are 'Not relevant' to this biotope which is restricted to fully subtidal habitats.

<table>
<thead>
<tr>
<th>Wave exposure changes (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: Low C: Low</td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

As this biotope occurs in sublittoral habitats, it is not directly exposed to the action of breaking waves. Associated polychaete species that burrow are protected within the sediment but the characterizing bivalves would be exposed to oscillatory water flows at the seabed. They and other associated species may be indirectly affected by changes in water movement where these impact the supply of food or larvae or other processes. No specific evidence was found to assess this pressure.

Sensitivity assessment. The range of wave exposures experienced by this biotope and similar infralittoral and circlalittoral biotopes is considered to indicate, by proxy, that the biotope would have 'High’ resistance and by default ‘High’ resilience to a change in significant wave height at the pressure benchmark. The biotope is therefore classed as 'Not sensitive'.

Chemical Pressures

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
</table>
Spisula subtruncata and Nephtys hombergii in shallow muddy sand - Marine Life Information Network

Transition elements & organo-metal contamination

<table>
<thead>
<tr>
<th></th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is **Not assessed** but evidence is presented where available.

The capacity of bivalves to accumulate heavy metals in their tissues, far in excess of environmental levels, is well known. Reactions to sub-lethal levels of heavy metal stressors include siphon retraction, valve closure, inhibition of byssal thread production, disruption of burrowing behaviour, inhibition of respiration, inhibition of filtration rate, inhibition of protein synthesis and suppressed growth (see review by Aberkali & Trueman, 1985). Stirling (1975) investigated the effect of exposure to copper on *Tellina tenuis*. The 96 hour LC$_{50}$ for Copper was 1000 µg/l. Exposure to Copper concentrations of 250 µg/l and above inhibited burrowing behaviour and would presumably result in greater vulnerability to predators. Similarly, burial of the venerid bivalve, *Venerupis senegalensis*, was inhibited by copper spiked sediments, and at very high concentrations, clams closed up and did not bury at all (Kaschl & Carballeira, 1999). The copper 10 day LC$_{50}$ for *Venerupis senegalensis* was found to be 88 µg/l in sandy sediments (Kaschl & Carballeira, 1999).

Echinoderms are also regarded as being intolerant of heavy metals (e.g. Bryan, 1984; Kinne, 1984) while polychaetes are tolerant (Bryan, 1984).

Hydrocarbon & PAH contamination

<table>
<thead>
<tr>
<th></th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is **Not assessed** but evidence is presented where available.

Suchanek (1993) reviewed the effects of oil on bivalves. Generally, contact with oil causes an increase in energy expenditure and a decrease in feeding rate, resulting in less energy available for growth and reproduction. Sublethal concentrations of hydrocarbons also reduce byssal thread production (thus weakening attachment) and infaunal burrowing rates. Conan (1982) investigated the long-term effects of the Amoco Cadiz oil spill at St Efflam beach in France. It was estimated that the delayed mortality effects on sand and mud biotas were 1.4 times as large as the immediate effects. *Fabulina fabula* (studied as *Tellina fabula*) started to disappear from the intertidal zone a few months after the spill and from then on was restricted to subtidal levels. In the following 2 years, recruitment of *Fabulina fabula* was very much reduced. The author commented that, in the long-term, the biotas most severely affected by oil spills are low energy sandy and muddy shores, bays and estuaries. In such places, populations of species with long and short-term life expectancies (e.g. *Fabulina fabula*, *Echinocardium cordatum* and *Ampelisca* sp.) either vanished or displayed long-term decline following the Amoco Cadiz oil spill. Polychaetes, however, including *Nephtys hombergii*, cirratulids and capitellids were largely unaffected.

Dauvin (1998) reported the effects of the Amoco Cadiz spill on the fine sand community in the Bay of Morlaix. Reductions in abundance, biomass and production of the community were very evident through the disappearance of the dominant populations of the amphipods *Ampelisca* sp. which are very intolerant of oil contamination. 2 weeks after the spill, the level of hydrocarbons in subtidal sediments reached 200 ppm (Dauvin, 1984; cited in Poggiale & Dauvin, 2001). This caused the disappearance of the *Ampelisca* populations, leaving behind a single species, *Ampelisca sarsi*, in very low densities. The sediment rapidly depolluted and in 1981 benthic recruitment occurred in normal conditions (Dauvin, 1998). However, the recovery of the *Ampelisca* populations took up to
15 years. This was probably due to the amphipods’ low fecundity, lack of pelagic larvae and the absence of local unperturbed source populations (Poggiale & Dauvin, 2001).

Echinoderms also seem to be especially intolerant of the toxic effects of oil, probably because of the large amount of exposed epidermis (Suchanek, 1993). The high intolerance of *Echinocardium cordatum* to hydrocarbons was seen by the mass mortality of animals, down to about 20m depth, shortly after the *Amoco Cadiz* oil spill (Cabioch et al., 1978).

Dauvin (2000) The muddy fine sand *Abra alba-Melinna palmata* community from the Bay of Morlaix (western English Channel) was strongly polluted by hydrocarbons from the *Amoco Cadiz* oil spill in April 1978. Long-term changes of this community (1977-1996) showed that it was weakly affected by the spill. This was due to the low number and low abundance of sensitive species present on the community in normal conditions. Polychaetes, such as *Chaetozone setosa* dominated the community, supporting high levels of organic matter. Only two opportunistic polychaetes *Mediomastus fragilis* and *Tharyx marioni* increased in abundance just after the spill.

Glycera spp. were described by Hiscock et al. (2004; 2005, from Levell et al., 1989) as a very tolerant taxa, found in enhanced abundances in the transitional zone along hydrocarbon contamination gradients surrounding oil platforms.

The Braer oil spill in Shetland in 1993 provided an opportunity to identify species that increased or declined in abundance where oiling occurred. Severe weather conditions meant that oil was incorporated into sediments. Kingston et al. (1995) noted that the congener *Lumbrineris gracilis* (from Hiscock et al., 2004) declined at oiled sites.

Diaz-Castaneda et al. (1989) looked at colonization of defaunated and polluted sediments in Dunkerque harbour. The sediment was polluted with both heavy metals and oil. *Capitella capitata* was generally the first polychaete to colonize the polluted sediment. *Spiro flicinis* took between 7 weeks and 3 months to appear in the sediment suggesting it is tolerant of oil pollution.

<table>
<thead>
<tr>
<th>Synthetic compound contamination</th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is Not assessed but evidence is presented where available.

Stirling (1975) investigated the effects of phenol, a non-persistent, semi-synthetic organic pollutant, on *Tellina tenuis*. Exposure to phenol produced a measurable effect on burrowing at all concentrations tested, i.e. 50 mg/l and stronger. Sub-lethal effects of exposure to phenol included delayed burrowing and valve adduction to exclude the pollutant from the mantle cavity. After exposure to 100 mg/l for 24 hours, the majority of animals were extended from their shells and unresponsive to tactile stimulation. Following replacement of the phenol solution with clean seawater, good recovery was exhibited after 2 days for animals exposed to 50 mg/l and some recovery occurred after 4 days for animals exposed to 100 mg/l.

Similarly, no evidence was found directly relating to the effects of synthetic chemicals on *Magelona mirabilis*. However, there is evidence from other polychaete species. Collier & Pinn (1998) investigated the effect on the benthos of ivermectin, a feed additive treatment for infestations of sea-lice on farmed salmonids. The polychaete *Hediste diversicolor* was particularly susceptible, exhibiting 100% mortality within 14 days when exposed to 8 mg/m³ of ivermectin in a microcosm. *Arenicola marina* was also intolerant of ivermectin through the ingestion of contaminated sediment.
Spisula subtruncata and Nephtys hombergii in shallow muddy sand - Marine Life Information Network

Date: 2016-07-01

(Thain et al., 1998; cited in Collier & Pinn, 1998) and it was suggested that deposit feeding was an important route for exposure to toxins. Beaumont et al. (1989) investigated the effects of tri-butyl tin (TBT) on benthic organisms. At concentrations of 1-3 µg/l there was no significant effect on the abundance of Hediste diversicolor after 9 weeks in a microcosm. However, no juvenile polychaetes were retrieved from the substratum and hence there is some evidence that TBT had an effect on the larval and/or juvenile stages.

Detergents used to disperse oil from the Torrey Canyon oil spill caused mass mortalities of Echinocardium cordatum (Smith, 1968) and its intolerance to TBT is similar to that of other benthic organisms with LC$_{50}$ values of 222ng Sn/l in pore water and 1594ng Sn/g dry weight of sediment (Stronkhorst et al., 1999).Gammaridean amphipods have also been reported to be intolerant of TBT with 10 day LC$_{50}$ values of 1-48 ng/l (Meador et al., 1993).

No evidence.

Riedel et al. (2012) assessed the response of benthic macrofauna to hypoxia advancing to anoxia in the Mediterranean. The hypoxic and anoxic conditions were created for 3-4 days in a box that enclosed in-situ sediments. In general, molluscs were more resistant than polychaetes, with 90% surviving hypoxia and anoxia, whereas only 10% of polychaetes survived. Exposed individual Timoclea ovata and Tellina serrata survived the experiment but the exposed Glycera spp. died. In general, epifauna were more sensitive than infauna, mobile species more sensitive than sedentary species and predatory species more sensitive than suspension and deposit feeders. The test conditions did not lead to the production of hydrogen sulphide which may have reduced mortalities compared to some observations.

Further evidence of sensitivity was available for some of the polychaete species associated with this biotope. Rabalais et al. (2001) observed that hypoxic conditions in the north Coast of the Gulf of Mexico (oxygen concentrations from 1.5 to 1 mg/l (1 to 0.7 ml/l) led to the emergence of Lumbrineris sp. from the substrate these then lie motionless on the surface. Glycera alba was found to be able to tolerate periods of anoxia resulting from inputs of organic rich material from a wood pulp and paper mill in Loch Eil (Scotland) (Blackstock & Barnes, 1982). Niermann et al. (1990) reported changes in a fine sand community for the German Bight in an area with regular seasonal hypoxia. In 1983, oxygen levels were exceptionally low (<3 mg O$_2$/l) in large areas and <1 mg O$_2$/l in some areas. Species richness decreased by 30-50% and overall biomass fell. Owenia fusiformis were reduced in abundance significantly by the hypoxia Spiophanes bombyx was found in small numbers at some, but not all areas, during the period of hypoxia. Once oxygen levels returned to normal Spiophanes bombyx increased in abundance; the evidence suggests that at least some
individuals would survive hypoxic conditions.

Sensitivity assessment. Riedel et al. (2012) provide evidence on general sensitivity trends. The characterizing bivalves are likely to survive hypoxia at the pressure benchmark although the polychaetes present, particularly the mobile predatory species such as Glycera and Nephtys may be less tolerant. As the biotope is characterized by bivalves and polychaetes, resistance is assessed as ‘Low’ and resilience as ‘High’ based on migration, water transport of adults and recolonization by pelagic larvae. Biotopic sensitivity is assessed as ‘Low’.

Nutrient enrichment

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

This pressure relates to increased levels of nitrogen, phosphorus and silicon in the marine environment compared to background concentrations. The pressure benchmark is set at compliance with Water Framework Directive (WFD) criteria for good status, based on nitrogen concentration (UKTAG, 2014).

Bivalves, polychaetes and other invertebrate species are unlikely to be directly affected by changes in nutrient enrichment.

Sensitivity assessment. As this biotope is structured by the sediments and water flow rather than nutrient enrichment and is not characterized by macroalgae (although some may be present), the biotope is considered to have ‘High’ resistance to this pressure and ‘High’ resilience, (by default) and is assessed as ‘Not sensitive’.

Organic enrichment

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

At the pressure benchmark, organic inputs are likely to represent a food subsidy for the associated deposit feeding species and are unlikely to significantly affect the structure of the biological assemblage or impact the physical habitat. Biotopic sensitivity is therefore assessed as ‘High’ and resilience as ‘High’ (by default), and the biotope is therefore considered to be ‘Not sensitive’.

Physical Pressures

Physical loss (to land or freshwater habitat)

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Very Low</td>
<td>High</td>
</tr>
</tbody>
</table>

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no specific evidence is described, confidence in this assessment is ‘High’ due to the incontrovertible nature of this pressure.

Physical change (to another seabed type)

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Very Low</td>
<td>High</td>
</tr>
</tbody>
</table>

https://www.marlin.ac.uk/habitats/detail/1132
The biotope is characterized by the sedimentary habitat (JNCC, 2015), so a change to an artificial or rock substratum would alter the character of the biotope leading to reclassification and the loss of the sedimentary community including the characterizing bivalves, polychaetes and echinoderms that live buried within the sediment.

Sensitivity assessment. Based on the loss of the biotope, resistance is assessed as ‘None’, recovery is assessed as ‘Very Low’ (as the change at the pressure benchmark is permanent), and sensitivity is assessed as ‘High’.

<table>
<thead>
<tr>
<th>Physical change (to another sediment type)</th>
<th>Low</th>
<th>Very Low</th>
<th>High</th>
</tr>
</thead>
</table>

This biotope is found in medium to very fine sand with some silt (JNCC, 2015). The change referred to at the pressure benchmark is a change in sediment classification (based on Long, 2006) rather than a change in the finer-scale original Folk categories (Folk, 1954). For sand sediments, resistance is assessed based on a change to either mixed sediments or mud and sandy muds.

Sediment type is a key factor structuring the biological assemblage present in the biotope. Surveys over sediment gradients and before-and-after impact studies from aggregate extraction sites where sediments have been altered indicate patterns in change. The biotope classification (JNCC, 2015) provides information on the sediment types where biotopes are found and indicates likely patterns in change if the sediment were to alter.

Differences in biotope assemblages in areas of different sediment type are likely to be driven by pre and post recruitment processes. Sediment selectivity by larvae will influence levels of settlement and distribution patterns. Snelgrove et al. (1999) demonstrated that *Spisula solidissima*, selected coarse sand over muddy sand, and capitellid polychaetes selected muddy sand over coarse sand, regardless of site. Both larvae selected sediments typical of adult habitats, however, some species were nonselective (Snelgrove et al., 1999) and presumably in unfavourable habitats post recruitment, mortality will result for species that occur in a restricted range of habitats. Some species may, however, be present in a range of sediments. Post-settlement migration and selectivity also occurred on small scales (Snelgrove et al., 1999).

Cooper et al. (2011) found that characterizing species from sand dominated sediments were equally likely to be found in gravel dominated sediments, and an increase in sediment coarseness may not result in loss of characterizing species but biotope classification may revert to the biotope SS.SC.SCS.CCS.MedLumVen, which occurs in gravels (JNCC, 2015).

Desprez (2000) found that a change of habitat to fine sands from coarse sands and gravels (from deposition of screened sand following aggregate extraction) changed the biological communities present. *Tellina pygmaea* and *Nephtys cirrosa* dominated the fine sand community. Dominant species of coarse sands, *Echinocyamus pusillus* and *Amphipholis squamata*, were poorly represented and the characteristic species of gravels and shingles were absent (Desprez, 2000).

Sensitivity assessment. A change to finer, muddy and mixed sediments is likely to reduce the abundance of the characterizing *Tellina* spp., venerid bivalves and other bivalves such as *Spisula solida*, and favour polychaetes. Such changes would lead to biotope reclassification. Biotope resistance is therefore assessed as ‘Low’ (as some species may remain), resilience is Very low (the pressure is a permanent change) and sensitivity is assessed as High.
Most of the animals that occur in this biotope are shallowly buried and extraction of the sediment will remove the biological assemblage.

Sensitivity assessment. Resistance is assessed as ‘None’ as extraction of the sediment will remove the characterizing and associated species present. Resilience is assessed as ‘Medium’ as some species may require longer than two years to re-establish (see resilience section) and sediments may need to recover (where exposed layers are different). Biotope sensitivity is therefore assessed as ‘Medium’.

Abrasion/disturbance of the surface of the substratum or seabed

Resistances are assessed as follows:

- **Q:** Low
- **A:** NR
- **C:** NR
- **Q:** High
- **A:** Medium
- **C:** High
- **Q:** High
- **A:** Low
- **C:** Medium

Abrasion is likely to damage epifauna and flora and may damage a proportion of the characterizing species, biotope resistance is therefore assessed as ‘Medium’. Resilience is assessed as ‘High’ as opportunistic species are likely to recruit rapidly and some damaged characterizing species may recover or recolonize. Biotope sensitivity is assessed as ‘Low’.

Penetration or disturbance of the substratum subsurface

Resistances are assessed as follows:

- **Q:** Medium
- **A:** High
- **C:** Medium
- **Q:** High
- **A:** Medium
- **C:** High
- **Q:** High
- **A:** High
- **C:** Medium

The epifauna and infaunal assemblages of both stable and dynamic fine sands are susceptible to direct physical disturbance from towed demersal gears and dredges which penetrate and disturb the sediment (e.g. Eleftheriou & Robertson, 1992; Kaiser et al., 1998; Robinson & Richardson, 1998; Schwinghamer et al., 1996; Freese et al., 1999; Prena et al., 1999; Bergman & Van Santbrink, 2000a,b; Tuck et al., 2000; Kenchington et al., 2001; Gilkinson et al., 2005). In general, fishing using towed gears results in the mortality of non-target organisms either through physical damage inflicted by the passage of the trawl or indirectly by disturbance, damage, exposure and subsequent predation. Beam trawling, for example, decreases the density of common echinoderms, polychaetes and molluscs (Bergman & Hup, 1992) and decreases the density and diversity of epifauna in stable sand habitats (Kaiser & Spencer, 1996).

Gilkinson et al. (1998) simulated the physical interaction of otter trawl doors with the seabed in a laboratory test tank using a full-scale otter trawl door model. Between 58% and 70% of the bivalves in the scour path that were originally buried were completely or partially exposed at the test bed surface. However, only two out of a total of 42 specimens showed major damage. The pressure wave associated with the otter door pushes small bivalves out of the way without damaging them. Where species can rapidly burrow and reposition (typically within species occurring in unstable habitats) before predation mortality rates will be relatively low. These experimental observations are supported by diver observations of fauna dislodged by a hydraulic dredge used to catch *Ensis* spp. Small bivalves were found in the trawl tracks that had been dislodged from the sediments, including the venerid bivalves *Dosinia exoleta*, *Chamelea striatula* and the hatchet shell *Lucinoma borealis*. These were usually intact (Hauton et al., 2003a) and could potentially reburrow.
Larger, fragile species are more likely to be damaged by sediment penetration and disturbance than smaller species (Tillin et al., 2006). Bergman & van Santbrink (2000a and b) suggested that the megafauna were amongst the species most vulnerable to direct mortality due to bottom trawling in sandy sediments. Stomach analysis of fish caught scavenging in the tracks of beam trawls found parts of Spatangus purpureus and Ensis spp. indicating that these had been damaged and exposed by the trawl (Kaiser & Spencer, 1994a). Capasso et al. (2010) compared benthic survey datasets from 1895 and 2007 for an area in the English Channel. Although methodological differences limit direct comparison, the datasets appear to show that large, fragile urchin species including Echinus esculentus, Spatangus purpureus and Psammechinus miliaris and larger bivalves had decreased in abundance. Small, mobile species such as amphipods and small errant and predatory polychaetes (Nephtys, Glycera, Lumbrineris) appeared to have increased (Capasso et al., 2010). The area is subject to beam trawling and scallop dredging and the observed species changes would correspond with predicted changes following physical disturbance. Two small species: Timoclea ovata and Echinocyamus pusillus had increased in abundance between the two periods.

Sensitivity assessment. The trawling studies and the comparative study by Capasso et al. (2010) suggest that the biological assemblage present in this biotope is characterized by species that are relatively tolerant of penetration and disturbance of the sediments. Either species are robust or buried within sediments or are adapted to habitats with frequent disturbance (natural or anthropogenic) and recover quickly. The results suggest that a reduction in physical disturbance may lead to the development of a community with larger, more fragile species including large bivalves. Biotop resistance is assessed as ‘Medium’ as some species will be displaced and may be predated or injured and killed. Biotope resilience is assessed as ‘High’ as most species will recover rapidly and the biotope is likely to still be classified as the same type following disturbance. Biotope sensitivity is therefore assessed as ‘Low’.

Changes in suspended solids (water clarity)

- **Medium**
 - Q: Low A: NR C: NR
 - A: Medium
 - C: NR
- **High**
 - Q: High A: Low C: Medium
 - A: Low
 - C: Medium
- **Low**
 - Q: Low A: Low C: Low
 - A: Low
 - C: Low

A change in turbidity at the pressure benchmark is assessed as an increase from intermediate 10-100 mg/l to medium (100-300 mg/l) and a change to clear (<10 mg/l). An increase or decrease in turbidity may affect primary production in the water column and indirectly alter the availability of phytoplankton food available to species in filter feeding mode. However, phytoplankton will also be transported from distant areas and so the effect of increased turbidity may be mitigated to some extent. According to Widdows et al. (1979), growth of filter-feeding bivalves may be impaired at suspended particulate matter (SPM) concentrations >250 mg/l.

Sensitivity assessment. No direct evidence was found to assess impacts on the characterizing and associated species. The characterizing, suspension feeding bivalves are not predicted to be sensitive to decreases in turbidity and may be exposed to, and tolerant of, short-term increases in turbidity following sediment mobilization by storms and other events. An increase in suspended solids, at the pressure benchmark may have negative impacts on growth and fecundity by reducing filter feeding efficiency and imposing costs on clearing. Biotope resistance is assessed as ‘Medium’ as there may be some shift in the structure of the biological assemblage and resilience is assessed as ‘High’ (following restoration of typical conditions). Biotope sensitivity is assessed as ‘Low’.

Smothering and siltation rate changes (light)

- **Medium**
 - Q: High A: Medium C: Medium
 - A: High
 - C: Medium
- **High**
 - Q: High A: Low C: Medium
 - A: Low
 - C: Medium
- **Low**
 - Q: High A: Low C: Medium
 - A: Low
 - C: Medium
Addition of fine material will alter the character of this habitat by covering it with a layer of
dissimilar sediment and will reduce suitability for the species associated with this
feature. Recovery will depend on the rate of sediment mixing or removal of the overburden, either
naturally or through human activities. Recovery to a recognisable form of the original biotope will
not take place until this has happened. In areas where the local hydrodynamic conditions are
unaffected, fine particles will be removed by wave action moderating the impact of this pressure.
The rate of habitat restoration would be site-specific and would be influenced by the type of
siltation and rate. Long-term or permanent addition of fine particles would lead to re-classification
of this biotope type (see physical change pressures). The additions of silts to a Spisula solida bed in
Waterford Harbour (Republic of Ireland) from earthworks further upstream, for example, reduced
the extent of the bed (Fahy et al., 2003). No information was provided on the depth of any deposits.

Most bivalve species are capable of burrowing through sediment to feed, e.g. Abra alba are capable
of upwardly migrating if lightly buried by additional sediment (Schafer, 1972). There may be an
energetic cost expended by species to either re-establish burrow openings, to self-clean feeding
apparatus or to move up through the sediment, though this is not likely to be significant. Most
animals will be able to reburrow or move up through the sediment within hours or days. Bijkerk
(1988, results cited from Essink, 1999) indicated that the maximal overburden through which
small bivalves could migrate was 20 cm in sand for Donax and approximately 40 cm in mud for
Tellina sp. and approximately 50 cm in sand. No further information was available on the rates of
survivorship or the time taken to reach the surface. Little direct evidence was found to assess the
impact of this pressure at the benchmark level. Powilleit et al. (2009) studied the response of the
polychaete Nephtys hombergii to smothering. This species successfully migrated to the surface of
32-41 cm deposited sediment layer of till or sand/till mixture and restored contact with the
overlying water. The high escape potential could partly be explained by the heterogeneous texture
of the till and sand/till mixture with ‘voids’. While crawling upward to the new sediment surfaces
burrowing velocities of up to 20 cm/day were recorded for Nephtys hombergii. Similarly, Bijkerk
(1988, results cited from Essink 1999) indicated that the maximal overburden through which
species could migrate was 60 cm through mud for Nephtys and 90 cm through sand. No further
information was available on the rates of survivorship or the time taken to reach the surface.

Sensitivity assessment. Bivalves and polychaetes and other species are likely to be able to survive
short periods under sediments and to reposition. However, as the pressure benchmark refers to
fine material, this may be cohesive and species characteristic of sandy habitats may be less
adapted to move through this than sands. Biotope resistance is assessed as 'Medium' as some
mortality of characterizing and associated species may occur. Biotope resilience is assessed as
'High' and biotope sensitivity is assessed as 'Low'.

Smothering and siltation
rate changes (heavy)
Q: High A: Medium C: NR
Q: High A: Low C: Medium
Q: High A: Low C: Low

Bijkerk (1988, results cited from Essink, 1999) indicated that the maximal overburden through
which small bivalves could migrate was 20 cm in sand for Donax and approximately 40 cm in mud
for Tellina sp. and approximately 50 cm in sand. No further information was available on the rates of
survivorship or the time taken to reach the surface.

Sensitivity assessment. The character of the overburden is an important factor determining the
degree of vertical migration of buried bivalves. Individuals are more likely to escape from a
covering similar to the sediments in which the species is found than a different type. Resistance is
assessed as 'Low' as few individuals are likely to reposition. Resilience is assessed as 'Medium' and sensitivity is assessed as 'Medium'.

Litter

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Assessed (NA)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not assessed.

Electromagnetic changes

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence (NEv)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No evidence.

Underwater noise changes

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not relevant. No information was found concerning the intolerance of the biotope or the characterizing species to noise. The siphons of bivalves and palps of polychaetes are likely to detect vibrations and are probably withdrawn as a predator avoidance mechanism. However, it is unlikely that the biotope will be affected by noise or vibrations caused by noise at the level of the benchmark.

Introduction of light or shading

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not relevant.

Barrier to species movement

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not relevant.

Death or injury by collision

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not relevant’ to seabed habitats. NB. Collision by grounding vessels is addressed under ‘surface abrasion.

Visual disturbance

<table>
<thead>
<tr>
<th></th>
<th>Q: NR</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not relevant.

Biological Pressures

<table>
<thead>
<tr>
<th></th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key characterizing species within this biotope are not cultivated or translocated. This pressure is therefore considered 'Not relevant' to this biotope group.

Introduction or spread of invasive non-indigenous species

<table>
<thead>
<tr>
<th>Q:</th>
<th>A:</th>
<th>C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>NR</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Few invasive non-indigenous species may be able to colonize mobile sands, due to the high-levels of sediment disturbance. However, two species may be of concern. The slipper limpet *Crepidula fornicata* may settle on stones in substrates and hard surfaces such as bivalve shells and can sometimes form dense carpets which can smother bivalves and alter the seabed, making the habitat unsuitable for larval settlement. Dense aggregations trap suspended silt, faeces and pseudofaeces altering the benthic habitat. Where slipper limpet stacks are abundant, few other bivalves can live amongst them (Fretter & Graham, 1981; Blanchard, 1997). Muddy and mixed sediments in wave sheltered areas are probably optimal but *Crepidula fornicata* has been recorded from a wide variety of habitats including clean sands and areas subject to moderately strong tidal streams (Blanchard, 1997; De Montaudouin & Sauriau, 1999). Bohn et al. (2015) report that in the Milford Haven Waterway (MHW) in south-west Wales, UK, subtidally, highest densities were found in areas of high gravel content (grain sizes 16-256 mm), suggesting that the availability of this substrata type is beneficial for its establishment.

The colonial ascidian *Didemnum vexillum* is present in the UK but appears to be restricted to artificial surfaces such as pontoons, this species may, however, have the potential to colonize and smother offshore gravel habitats. Valentine *et al.*, (2007) describe how *Didemnum* sp. appear to have rapidly colonized gravel areas on the Georges Bank (US/Canada boundary). Colonies can coalesce to form large mats that may cover more than 50% of the seabed in parts. Areas of mobile sand bordered communities of *Didemnum* sp. and these therefore do not appear to be suitable habitats (Valentine *et al.*, 2007).

Although not currently established in UK waters, the whelk *Rapana venosa*, may spread to UK habitats from Europe. Both *Rapana venosa* and the introduced oyster drill *Urosalpinx cinerea* both predate on bivalves and could therefore negatively affect the characterizing bivalve species.

Sensitivity assessment. The sediments characterizing this biotope are likely to too mobile or otherwise unsuitable for most of the recorded invasive non-indigenous species currently recorded in the UK. The slipper limpet may colonize this habitat resulting in habitat change and potentially classification to the biotope which is found in similar habitats SS.SMx.IMx.CreAsAn. *Didemnum* sp. and non-native predatory gastropods may also emerge as a threat to this biotope, although more mobile sands may exclude *Didemnum*. Based on *Crepidula fornicata* biotope resistance is assessed as ‘None’ and resilience as ‘Very low’ (as removal of established non-native is unlikely), so that biotope sensitivity is assessed as 'High'.

Introduction of microbial pathogens

<table>
<thead>
<tr>
<th>Q:</th>
<th>A:</th>
<th>C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High: High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>High: Low</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>High: Low</td>
<td>Low</td>
<td>Medium</td>
</tr>
</tbody>
</table>
No evidence was found for the characterizing polychaete species. Populations of bivalve species may be subject to a variety of diseases and parasites but evidence for the characterizing bivalves is limited. Berilli et al. (2000) conducted a parasitological survey of the bivalve *Chamelea gallina* in natural beds of the Adriatic Sea, where anomalous mortalities had been observed in 1997-1999. The occurrence of protozoans belonging to the families Porosporidae, Hemispeiridae and Trichodinidae was recorded. Porosporidae of the genus *Nematopsis*, present with 4 species, showed a prevalence of 100%. The results suggested that severe infections of protozoans of the genus *Nematopsis* could cause a not negligible respiratory sufferance, with a possible role in the decline of the natural banks of *Chamelea gallina* (Berilli et al., 2000).

Bacterial diseases are frequently found in molluscs during their larval stages, but seem to be relatively insignificant in populations of adult animals (López-Flores et al., 2004). This may be due to the primary defence mechanisms of molluscs, phagocytosis and encapsulation, which fight against small-sized pathogens, and whose resistance may be age related (Sinderman, 1990; López-Flores et al., 2004).

Individuals of *Fabulina fabula* from Boulogne-sur-Mer (studied as *Angulus fabula*) were infected with the trematode parasite *Gymnophallus strigatus*, causing erosion of the shell (Giard, 1897, cited in Kinne, 1983).

Sensitivity assessments. Pathogens may cause mortality and there may be a minor decline in species richness or abundance in the biotope. As there is no evidence for mass mortalities of characterizing species that would alter biotope classification biotope resistance is assessed as ‘Medium’. Biotpe resilience is assessed as ‘High’ as changes may fall within natural population variability and a recognizable biotope is likely to be present after two years. Biotpe sensitivity is therefore assessed as ‘Low’.

Removal of target species

<table>
<thead>
<tr>
<th>Q: Low</th>
<th>A: NR</th>
<th>C: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High</td>
<td>A: Low</td>
<td>C: Medium</td>
</tr>
<tr>
<td>Q: Low</td>
<td>A: Low</td>
<td>C: Low</td>
</tr>
</tbody>
</table>

A number of the larger bivalve species that may be associated with this biotope group are targeted by commercial fishers in some parts of their range. These include *Chamelea gallina* (Ballarin et al., 2003); *Spisula solida* (Fahy et al., 2003; Joaquim et al., 2008); *Glycymeris glycymeris* and *Paphia* spp. (Savina & Pouvreau, 2004); *Ensis* spp., *Donax* spp. and *Pharus* spp. (Chícharo et al., 2002). In targeted areas, the populations of fished bivalves may be depleted, for example, fishing has led to declines in *Spisula solida* (Joaquim et al., 2008; Fahy et al., 2003).

Sensitivity assessment. In general, dredges that are used to target bivalves are likely to be efficient at removing targeted species. Removal of commercially targeted bivalves may lead to biotope reclassification based on the dominance of polychaetes to a similar biotope. Biotpe resistance, based on the characterizing bivalves is assessed as ‘Low’. Undersized juveniles may be returned and can re-burrow but are likely to suffer from stress. Targeted removal of adult bivalves within the biotope may allow successful recruitment of juveniles where intra-specific competition for space and food and possibly consumption of larvae has prevented successful spatfall. Some species such as *Glycymeris glycymeris* are characteristic of habitats with low levels of competition and may benefit from removal of other species. Biotpe resilience is assessed as ‘Medium’, as recruitment in many bivalve species is episodic and unpredictable. Biotpe sensitivity is therefore assessed as ‘Medium’.

https://www.marlin.ac.uk/habitats/detail/1132
Species within the biotope are not functionally dependent on each other, although biological interactions will play a role in structuring the biological assemblage through predation and competition. Removal of adults may support recruitment of juvenile bivalves by reducing competition for space and consumption of larvae.

Removal of species would also reduce the ecological services provided by these species such as secondary production and nutrient cycling.

Sensitivity assessment. Species within the biotope are relatively sedentary or slow moving, although the infaunal position may protect some burrowing species from removal. Biotop resistance is, therefore, assessed as ‘Low’ and resilience as ‘High’, as the habitat is likely to be directly affected by removal and some species will recolonize rapidly, biotope sensitivity is therefore assessed as Low’. Some variability in species recruitment, abundance and composition is natural and therefore a return to a recognizable biotope should occur within 2 years. Repeated chronic removal would, however, impact recovery.
Bibliography

Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/

the Marine Biological Association of the United Kingdom. 62 (01), 147-155

https://www.marlin.ac.uk/habitats/detail/1132

