Abra alba and *Nucula nitidosa* in circalittoral muddy sand or slightly mixed sediment

MarLIN – Marine Life Information Network
Marine Evidence–based Sensitivity Assessment (MarESA) Review

Dr Heidi Tillin & Georgina Budd

2016-07-01

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version https://www.marlin.ac.uk/habitats/detail/62. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available [here](https://www.marlin.ac.uk). Based on a work at www.marlin.ac.uk
Summary

UK and Ireland classification

- **EUNIS 2008** A5.261
 Abra alba and *Nucula nitidosa* in circalittoral muddy sand or slightly mixed sediment

- **JNCC 2015** SS.SSa.CMuSa.AalbNuc
 Abra alba and *Nucula nitidosa* in circalittoral muddy sand or slightly mixed sediment

- **JNCC 2004** SS.SSa.CMuSa.AalbNuc
 Abra alba and *Nucula nitidosa* in circalittoral muddy sand or slightly mixed sediment

- **1997 Biotope** SS.CMS._.AbrNucCor
 Abra alba, *Nucula nitida* and *Corbula gibba* in circalittoral muddy sand or slightly mixed sediment

Description

Non-cohesive muddy sands or slightly shelly/gravelly muddy sand characterized by the bivalves *Abra alba* and *Nucula nitidosa*. Other important taxa include *Nephtys* spp., *Chaetoezone setosa* and...
Spirophanes bombyx with Fabulina fabula also common in many areas. The echinoderms Ophiura albida and Asterias rubens may also be present. The epibiotic biotope EcorEns may overlap this biotope. This biotope is part of the Abra community defined by Thorson (1957) and the infralittoral etage described by Glemarec (1973) (JNCC, 2015).

Depth range
10-20 m, 20-30 m, 30-50 m

Additional information
No text entered.

Listed By
- none -

Further information sources
Search on:

G G G JNCC
Habitat review

Ecology

Ecological and functional relationships

- A hydrodynamic regime of weak tidal streams and shelter from waves (owing to the depth of the seabed offshore) creates conditions for the formation of circalittoral muddy sands. Sediments in areas of seabed largely undisturbed by water movement are less well sorted, with substantial amounts of silt and organic matter, which favours deposit and suspension feeders of all types.
- The CMS.AbrNucCor biotope is dominated by bivalve molluscs. Bivalves that inhabit muddy low energy environments are typically deposit feeders, although suspension feeders, e.g. *Corbula gibba* may also be abundant, or species may be able to switch between feeding methods, e.g. *Abra alba*. When deposit feeding, bivalves remove, microzooplankton, organic and inorganic particles, and microbes including bacteria, fungi and microalgae from the sediment. They also probably absorb dissolved organic materials in much the same manner as when filter feeding (Dame, 1996). Deposit feeding bivalves adopt two approaches to feeding: bulk feeding and particle sorting. Some may ingest large amounts of sediment in a relatively nonselective manner, or may sort particles before they are ingested and reject the majority as pseudofaeces. Deposit feeding bivalves may process up to 20 times their body weight in sediments per hour with as much as 90% of the sediment egested as pseudofaeces (Lopez & Levinton, 1987). Suspension feeders also demonstrate some selection of particles ingested, the efficiency of which is related to palps size rather than gill type or turbidity in the bivalve's environment. For instance, *Corbula gibba* demonstrated a 10% selection efficiency in feeding experiments by Kiørboe & Møhlenberg (1981).
- Polychaetes are also characteristic of the infauna of the biotope. Members of the families Spionidae (e.g. *Prionospio* spp., *Spiophanes bombyx*, *Spio filicornis*) and Cirratulidae (e.g. *Chaetozone setosa*, *Tharyx* spp.) are small slender worms which burrow through the sediment and use their long anterior palps or tentacles to collect organic particles. *Nephtys hombergii* is carnivorous and captures molluscs, crustaceans and other polychaetes with its eversible, papillated proboscis. Other carnivorous polychaetes include glycerid polychaetes such as *Goniada maculata*, and *Glycera alba*. The flabelligerid worm, *Diplocirrus glaucus* is a commensal of sea urchins, e.g. *Echinocardium cordatum* and feeds on its faecal material (Hayward & Ryland, 1996). Some polychaetes, however, are less mobile and construct tubes or burrows in the sediment. *Lagis koreni* constructs a tapered tube of sand grains, open at both ends, but orientated so that the worm’s head is down in the sediment, drawing water and food into its burrow below the surface. Echiuran worms, e.g. *Echiurus echiurus*, also create burrows within the sediment and Thomsen & Altenbach (1993) found that the numbers and biomass of bacteria and foraminifera were up to three times higher around burrows of *Echiurus echiurus* than in surrounding sediment.
- The heart urchin, *Echinocardium cordatum* occurs in both muddy and clean sands, although it grows at a considerably slower rate in the former than the latter (Buchanan, 1966). It is a relatively large infaunal species whose burrowing activity may serve to enhance oxygenation of the sediments and make them less compact.
- The burrowing and feeding activities of deposit feeding macrofauna, are likely to modify the fabric and increase the mean particle size of the upper layers of the substrata by
aggregation of fine particles into faecal pellets. Such actions create a more open sediment fabric with a higher water content which affects the rigidity of the seabed (Rowden et al., 1998). Such alteration of the substratum surface can affect rates of particle resuspension.

- Bioturbation by the infauna on a variety of scales is also likely to be of particular importance in controlling chemical, physical and biological processes in marine sediments, especially when the influences of physical disturbances such as wave action or strong currents are minimized (Widdicombe & Austen, 1999).

- In summary, a mix of infaunal burrowers (bivalves, polychaetes and echinoderms) in a sedimentary biotope such as this will generate a complex and continually changing 'mosaic' of habitat patches experiencing different types and levels of disturbance. The differing responses of individual species to such patchiness are likely to be a factor in the maintenance of local species diversity. The depth of penetration into the sediment by infaunal species is also likely to be enhanced by the physical and chemical consequences of infaunal activity (Hughes, 1998).

- Epifaunal species include brittlestars, Ophiura albida and Ophiura ophiura, these species compete with neighbours for space, as they are surface deposit feeders. Like other echinoderms inhabiting soft sediments, they have pointed rather than suckered tube feet, the latter being of little use for attachment to soft sediment (Wood, 1988). Other epifaunal organisms associated with muddy sands are predominantly mobile species, including the crabs Liocarcinus depurator, Atelecyclus rotundatus and Macropodia spp. Predatory fish are also likely to frequent the biotope to feed upon bivalves, polychaetes and brittlestar arms, and include Dover sole, Solea solea and members of the cod family. The infaunal, tube-building, polychaete Lagis koreni is a significant food-source for commercially important demersal fish, especially dab and plaice, e.g. Macer (1967), Lockwood (1980) and Basimi & Grove (1985).

Seasonal and longer term change

- The relative density of the characterizing species in this biotope is likely to vary from year to year (Molander, 1962). Nucula nitidosa can, in some cases, be at least if not more prevalent than Abra alba (Salzwedel et al., 1985).

- In Red Wharf Bay on the east coast of Anglesey, many of the species there, for instance the worm Lagis koreni and Abra alba, are short lived species prone to great temporal variations in abundance (Rees et al. 1977; Rees & Walker, 1983). In contrast, longer-lived species such as the bivalve Nucula spp. Are less prone to erratic fluctuations in their abundance.

Habitat structure and complexity

The muddy sand / mixed substratum of the biotope offers little habitat complexity. However, structural diversity may be provided by either localized physiographic features created by the hydrodynamic regime or the biota. Some diversity within the substratum is provided by the burrows and burrowing activity of infauna. Most species living within the sediment are limited to the area above the anoxic layer, the depth of which will vary depending on sediment particle size and organic content. However, the presence of burrows allows a larger surface area of sediment to become oxygenated, and probably enhances the survival of a considerable variety of small species and to a greater depth (Pearson & Rosenberg, 1978).
Productivity

Benthic communities in deeper water, where light is insufficient for primary production, depend almost entirely on an input of energy via sedimentation of organic matter (Wood, 1987). Organic matter may be derived from phytoplankton, zooplankton, bacteria and faecal pellets, the supply of which is one of the main factors affecting production in these communities. If the majority of the phytoplankton and organic material is utilized in the surface waters, productivity of the seabed community would consequently be low. Estimates of productivity are available for individual species in the biotope, but specific community information was not found. For example:

- **Abra alba**: in Kiel Bay, mean annual biomass varied greatly between sites and between years: Biomass (B) =0.1-3 g AFDW (Ash Free Dry Weight) m⁻²; with a long-term average (Productivity:Biomass ratio) P:B = c 2.2 (Rainer, 1985); B = 0.1-2 g AFDW m⁻²; and P:B = 1.7-2.9 from five years of sampling at a location off the French coast (Dauvin, 1986); B = 0.3 g AFDW m⁻²; and P:B = 1.4 in the Bristol Channel, England (Warwick & George, 1980).
- **Lagis koreni**: annual production P = 18.3 g AFDW/m²/yr, with an average annual biomass B = 2.5 g AFDW/m²; and a productivity/biomass ratio P:B = 7.3 off the North Wales Coast (Nicolaidou, 1983, converted to AFDW after Brey, 1990).
- **Echinocardium cordatum**: biomass and productivity of this species is lower than that of the other smaller infaunal species of the biotope. In the central and southern North Sea, *Echinocardium cordatum* accounted for only 5% of benthic biomass at muddy sites, this contrasted with 50% of the biomass in clean sandy sites (Duineveld & Jenness, 1984). In Carmarthen Bay, North Wales, productivity of the species was P = -0.012 g AFDW/m²/yr, biomass B = 5.138 g AFDW/m²; with a productivity:biomass ratio P:B = -0.002 (Warwick et al., 1978).

Recruitment processes

Bivalve molluscs

The bivalves which characterize the biotope typically have an 'r' type life-cycle strategy (from Krebs, 1978, after Pianka, 1970), characteristics of which are high fecundity and rapid development, that allow rapid exploitation of available habitat. For instance, high densities of newly settled *Corbula gibba* (30,000-67,000 m⁻²) and *Abra alba* (16,000-22,000 m⁻²) were found at locations in the Limfjord, Denmark by Jensen (1988) and growth of both species was very rapid. However, recruitment in bivalves is heavily influenced by larval and post-settlement mortality so that large population increases are offset. Larval mortality results from predation during larval pelagic stages, predation from suspension feeding macrofauna (including conspecific adults) prior to settlement, deposit feeders after settlement and from settlement in unsuitable habitats. Mortality of the juveniles of marine benthic invertebrates can exceed 30% in the first day, and several studies report 90% mortality (Gosselin & Qian, 1997). In addition to larval dispersal, dispersal of juveniles and adults occurs via burrowing (Bonsdorff, 1984; Guenther, 1991), floating (Sörlin, 1988), and also possibly by bedload transport. It is expected therefore that recruitment can occur from both local and distant populations.

Polychaete worms

Polychaete worms in the biotope also tend to be 'r' type life-cycle strategists, with a dispersive planktonic larval stage that follows release and fertilization of gametes. Recruitment of *Lagis koreni* via its pelagic larvae is typically erratic between years, but newly settled juveniles may number several thousand per square metre (e.g. Macer, 1967; Basimi & Grove, 1985). Nichols (1977) recorded an early and late summer recruitment of *Lagis koreni* in Kiel Bay, but with additional
sporadic recruitment occurring throughout the year. However, off the North Wales coast, Nicolaidou (1983) observed only one recruitment event (in June). Colonization of any new or disturbed substrata may also occur by colonization of adults (Eagle, 1975; Rees et al., 1977). *Nephtys hombergii* matures between two and three years of age. In the Tyne Estuary spawning of *Nephtys hombergii* occurred in May and September, whilst in Southampton Water the species spawned throughout the year with peaks in July and November (Oyenekan, 1986). The pelagic life cycle of *Nephtys hombergii* lasts seven to eight weeks at the end of which larvae metamorphose into benthic juveniles.

Echinoderms

Echinocardium cordatum demonstrates a ‘K’ type life-cycle strategy (Rees & Dare, 1993) and subtidal populations of *Echinocardium cordatum* are reported to reproduce sporadically, e.g. one population recruited in only three years over a ten year period (Buchanan, 1966). Although, the species is fecund (> 1,000,000 eggs) recruitment is infrequently successful. Recruitment success may depend on temperatures of the preceding winter in some areas (Beukema, 1985).

Time for community to reach maturity

Diaz-Castaneda et al. (1989) experimentally investigated recolonization sequences of benthic associations over a period of one year, following defaunation of the sediment. Recovery of the *Abra alba* community was rapid, recruitment occurring from surrounding populations via the plankton. The abundance, total biomass and diversity of the community all increased until a maximum was reached after 20 to 24 weeks, according to the season. The community within the experimental containers matched that of the surrounding areas qualitatively but quantitatively within 4 to 8 months depending on the seasonal availability of recruits, food supply and faunal interactions. The experimental data suggested that *Abra alba* would colonize available sediments within the year following environmental perturbation. Summer settled recruits may grow very rapidly and spawn in the autumn, whilst autumn recruits experience delayed growth and may not reach maturity until the following spring/summer. In the worst instance, a breeding population of *Abra alba* may take up to two years to fully establish. Dittman et al. (1999) observed that *Nephtys hombergii* was included amongst the macrofauna that colonized experimentally disturbed tidal flats within two weeks of the disturbance that caused defaunation of the sediment. In addition to larval recruitment, recolonization by polychaete worms could also occur via adult migration. In contrast to the dominant characterizing bivalves and polychaetes, *Echinocardium cordatum* is a long lived species and takes a relatively long time to reach reproductive maturity. *Echinocardium cordatum* breeds for the first time when two to three years old and recruitment of is often sporadic with reports of recruiting in only three years over a ten year period for a subtidal population (Buchanan, 1966).

Thus it is likely that the dominant infaunal bivalve and polychaete community of the CMS.AbrNucCor biotope would recover rapidly from a disturbance and mature populations of important characterizing species be present within a year. However, other components of the community that take longer to attain maturity, e.g. *Echinocardium cordatum*, and in their absence the CMS.AbrNucCor biotope would be recognized but may be considered impoverished.

Additional information

No text entered.
Habitat preferences

Depth Range 10-20 m, 20-30 m, 30-50 m
Water clarity preferences Field Unresearched
Limiting Nutrients Field unresearched
Salinity preferences Full (30-40 psu)
Physiographic preferences Enclosed coast / Embayment
Biological zone preferences Circalittoral
Substratum/habitat preferences Mixed, Muddy sand
Tidal strength preferences Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences Exposed, Moderately exposed
Other preferences Muddy sand

Additional Information
No text entered.

Species composition

Species found especially in this biotope

- Abra alba
- Corbula gibba
- Nucula nitidosa

Rare or scarce species associated with this biotope

-

Additional information
No text entered.
Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

The initial project scoping exercise to update the existing MarLIN assessments with the MarESA approach grouped biotopes where sensitivities were likely to be similar. The biotopes SS.SSa.IMuSa.FfabMag; SS.SSa.IMuSa.SsubNhom; SS.SSa.CFiSa.EpusOborApri; SS.SSa.CFiSa.ApriBatPo and SS.SSa.CMuSa.AalbNuc represent a continuum along depth and sediment gradients and were grouped as their responses to pressures are probably similar, given the presence of similar species and functional groups. These biotopes have been reviewed as a group, although the resultant reviews and sensitivity assessments are presented separately for each biotope. The specific biotope assessments have been updated with information on characterizing species, where this was readily available, however, the assessments are relatively generic for this group.

Resilience and recovery rates of habitat

This biotope may recover from impacts via in-situ repair of damaged individuals, migration of adults of mobile species such as the errant polychaetes Glycera lapidum and Nephtys cirrosa, amphipods and urchins. Adults may also be transported in the water column following washout from sediments. Storm events may lead to the displacement of large numbers of individuals. Most bivalves will be able to reposition within the sediment and some, such as Glycymeris glycymeris, are also able to move and to relocate following displacement and disturbance (Thomas, 1975). For immobile species or where depopulation has occurred over a large area, recovery will depend on recolonization by pelagic larvae.

A large number of species are recorded in the biotopes within the assessed group and there may be large natural variation in species abundance over the course of a year or between years (see Dauvin, 1985 for Timoclea ovata; Fahy et al., 2003 for Spisula solida; Sardá et al., 1999 multispecies). These variations may not alter the biotope classification where habitat parameters, such as sediment type, remain as described in the classification and many of the characteristic species groups are present. For many of the bivalve species studied, recruitment is sporadic and depends on a successful spat fall but recruitment by the characterizing polychaetes may be more reliable. However, due to the large number of pre- and post-recruitment factors such as food supply, predation, and competition, recruitment of venerid bivalves and other species is unpredictable (Olafsson et al., 1994).

The life history characteristics of the characterizing bivalves and polychaetes and other species were reviewed. Little information was found for Moerella spp. Morton (2009) noted that despite the wide global distribution of the characterizing venerid bivalve, Timoclea ovata, little was known about its anatomy or basic biology. This appears to be the case for many of the other characterizing venerid bivalves and much more information was available for the polychaete species that occur in this biotope. Two linked factors that may explain this are the greater research effort in soft sediments with higher mud contents where sampling is easier than in coarse sediments. Venerid bivalves are also considered to be under-represented in grab samples (JNCC, 2015), so less is known of their occurrence on ecological and impact gradients.

The venerid bivalves in the biotope reach sexual maturity within two years, spawn at least once a year and have a pelagic dispersal phase (Guillou & Sauriau, 1985; Dauvin, 1985). No information was found concerning number of gametes produced, but the number is likely to be high as with
other bivalves exhibiting planktotrophic development (Olafsson et al., 1994). Recruitment in
venerids is likely to be episodic, some species such as Chamelea gallina may be long-lived (11-20
years). The long lifespan & slow growth rate suggest that this group is likely to take several years,
even if initial recolonization were to occur rapidly (MES, 2010). Dauvin (1985) reported that
Timoclea ovata (studied as Venus ovata) recruitment occurred in July-August in the Bay of Morlaix.
However, the population showed considerable pluriannual variations in recruitment, which
suggests that recruitment is patchy and/or post settlement processes are highly variable.

The species that are present in the biotope can be broadly characterized as either opportunist
species that rapidly colonize disturbed habitats and increase in abundance, or species that are
larger and longer-lived and that may be more abundant in an established, mature assemblage.

Species with opportunistic life strategies (small size, rapid maturation and short lifespan of 1-2
years with production of large numbers of small propagules), include the bivalve Spisula solida; and
the polychaetes Spiofilanthes bombyx, Spiophanes bombyx, Spiophanes bombyx, and Chaetozone setosa; also
cumaceans; barnacles Balanus crenatus; and the tube worm Spirobranchus (formerly Pomatoceros)
lamarckii. These are likely to recolonize disturbed areas first, although the actual pattern will
depend on recovery of the habitat, season of occurrence and other factors. The recovery of
bivalves that recruit episodically and the establishment of a representative age-structured
population for larger, longer lived organisms may require longer than two years. In an area that
had been subjected to intensive aggregate extraction for 30 years, abundances of juvenile and
adults Nephtys cirrosa had greatly increased three years after extraction had stopped (Mouleart &
Hostens, 2007). An area of sand and gravel subject to chronic working for 25 years had not
recovered after 6 years when compared to nearby reference sites unimpacted by operations (Boyd
et al., 2005). The characterizing Moerella (now Tellina) spp. are a relatively long-lived genus (6-10
years; MES, 2008, 2010) and the number of eggs is likely to be fewer than genera that have
planktotrophic larvae. Similarly, Chamelea sp. and Dosinia sp. are long lived (11-20 years and up to
20 years, respectively; MES, 2008, 2010). While recruitment may be rapid, restoration of the
biomass by growth of the colonizing individuals is likely to take many years.

Other longer lived species that may represent a more developed and stable assemblage include
the polychaete Owenia fusiformis which lives for 4 years and reproduces annually (Gentil et al.,
1990). Nephtys species and Glycera spp. are also longer-lived. Glycera are monotelic having a single
breeding period towards the end of their life but may recover through migration and may persist in
disturbed sediments through their ability to burrow (Klawe & Dickie, 1957). Glycera spp. have a
high potential rate of recolonization of sediments, but the relatively slow growth-rate and long
lifespan suggests that recovery of biomass following initial recolonization by post-larvae is likely to
take several years (MES, 2010). Following dredging of subtidal sands in summer and autumn to
provide material for beach nourishment in the Bay of Blanes, (north-west Mediterranean sea,
Spain) recovery was tracked by Sardá et al. (2000). Recolonization in the dredged habitats was
rapid, with high densities of Spisula subtruncata and Owenia fusiformis in the spring following
dredging, although most of these recruits did not survive summer. However, Glycera spp. and
Protodorvillea kefersteini had not recovered within two years (Sardá et al., 2000).

A number of studies have tracked recovery of sand and coarse sand communities following
disturbance from fisheries (Gilkinson et al., 2005) and aggregate extraction (Boyd et al., 2005). The
available studies confirm the general trend that, following severe disturbance, habitats are
recolonized rapidly by opportunistic species (Pearson & Rosenberg, 1978). Experimental
deployment of hydraulic clam dredges on a sandy seabed on Banquereau, on the Scotian Shelf,
eastern Canada showed that within 2 years of the impact, polychaetes and amphipods had
increased in abundance after 1 year (Gilkinson et al., 2005). Two years after dredging, abundances of opportunistic species were generally elevated relative to pre-dredging levels while communities had become numerically dominated (50-70%) by Spiophanes bombyx (Gilkinson et al., 2005). Van Dalfsen et al. (2000) found that polychaetes recolonized a dredged area within 5-10 months (reference from Boyd et al., 2005), with biomass recovery predicted within 2-4 years. The polychaete and amphipods are therefore likely to recover more rapidly than the characterizing bivalves and the biotope classification may revert, during recovery, to a polychaete dominated biotope.

Sardá et al. (1999) tracked annual cycles within a Spisula community in Bay of Blanes (north west Mediterranean sea, Spain) for 4 years. Macroinfaunal abundance peaked in spring, decreased sharply throughout the summer, with low density in autumn and winter. The observed trends were related to a number of species, including many that characterize this biotope such as Owenia fusiformis; Glyceria sp.; Protodorvillea kefersteini; Mediomastus fragilis; Spisula subtruncata; and Branchiostoma lanceolatum. The Spisula subtruncata populations were dominated by juveniles, with high abundances in spring followed by declines in summer, with very few survivors 3 months after recruitment. Inter-annual differences in recruitment of Owenia fusiformis were apparent and this species showed spring/summer increases. Mediomastus fragilis also had spring population peaks but more individuals persisted throughout the year. Protodorvillea kefersteini exhibited a similar pattern with spring recruitment and a population that persisted throughout the year.

Where impacts also alter the sedimentary habitat, recovery of the biotope will also depend on recovery of the habitat to the former condition to support the characteristic biological assemblage. Recovery of sediments will be site-specific and will be influenced by currents, wave action and sediment availability (Desprez, 2000). Except in areas of mobile sands, the process tends to be slow (Kenny & Rees, 1996; Desprez, 2000 and references therein). Boyd et al. (2005) found that in a site subject to long-term extraction (25 years), extraction scars were still visible after six years and sediment characteristics were still altered in comparison with reference areas, with ongoing effects on the biota.

Resilience assessment. Where resistance is 'None' or 'Low' and an element of habitat recovery is required, resilience is assessed as 'Medium' (2-10 years), based on evidence from aggregate recovery studies in similar habitats including Boyd et al. (2005). Where resistance of the characterizing species is 'Low' or 'Medium' and the habitat has not been altered, resilience is assessed as 'High' as, due to the number of characterizing species and variability in recruitment patterns, it is likely that the biotope would be considered representative and hence recovered after two years although some parameters such as species richness, abundance and biotopes may be altered. Recovery of the seabed from severe physical disturbances that alter sediment character may also take up to 10 years or longer (Le Bot et al., 2010), although extraction of gravel may result in more permanent changes and this will delay recovery.

NB: The resilience and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, the frequency (repeated disturbances versus a one-off event) and the intensity of the disturbance. Recovery of impacted populations will always be mediated by stochastic events and processes acting over different scales including, but not limited to, local habitat conditions, further impacts and processes such as larval-supply and recruitment between populations. Full recovery is defined as the return to the state of the habitat that existed prior to impact. This does not necessarily mean that every component species has returned to its prior condition, abundance or extent but that the relevant functional components are present and the habitat is structurally and functionally recognisable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.

Hydrological Pressures

<table>
<thead>
<tr>
<th>Temperature increase (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Low C: Medium</td>
<td>Q: High</td>
<td>Q: High A: Low C: Medium</td>
<td></td>
</tr>
</tbody>
</table>

Davenport & Davenport (2005) demonstrated that the limits of thermal tolerance to high and low temperatures reflect distribution of intertidal macroinvertebrate species. Species that occur highest on the shore are more tolerant of a wider range of temperatures than species that occurred low on the shore or subtidally. As subtidal biotopes are less exposed to temperature fluctuations, the characterizing species may be less able to tolerate temperature fluctuations.

No direct evidence was found to support assessment of this pressure. Very few laboratory studies have been carried out on the characterizing species and the assessment relies on information on larvae in the plankton or monitoring of settlement and records of species distribution. Species from different areas may be acclimated to prevailing conditions and life histories may vary, e.g. *Chamelea gallina* longevity varies between populations (Gaspar et al., 2004) as does the longevity of *Amphipholis squamata* in different locations and habitats (Emson et al., 1989).

Kröncke et al. (1998) examined long-term changes in the macrofauna in the subtidal zone off Norderney, one of the East Frisian barrier islands. The analysis suggested that macrofauna were severely affected by cold winters whereas storms and hot summers have no impact on the benthos. A long-term increase in temperature might cause a shift in species composition. Long-term analysis of the North Sea pelagic system has identified yearly variations in larval abundance of Echinodermata, Arthropoda, and Mollusca larvae that correlate with sea surface temperatures. Larvae of benthic echinoderms and decapod crustaceans increased after the mid-1980s, coincident with a rise in North Sea sea surface temperature, whereas bivalve larvae underwent a reduction (Kirby et al., 2008). An increase in temperature may alter larval supply and in the long-term, and over large spatial scales, may result in changes in community composition.

Temperature cues influence the timing of gametogenesis and spawning in several species present in the biotope. Seasonal variations in reproductive cycle of *Spisula solida* were studied at a site off Vilamoura, southern Portugal. The onset of spawning took place in February when the seawater temperature began to increase and spawning ended in May. It is possible that *Spisula solida* does not spawn at a definite temperature, rather responding to the increase in seawater temperature (Gaspar & Monteiro, 1999). Many polychaete species including *Mediomastus fragilis*, *Owenia fusiformis* and *Protodorvillea kefersteini* also show spring/early summer recruitment (Sardá et al., 1999).

Sensitivity assessment. Little evidence was available to assess this pressure. Assemblages in fine sands and muddy sands contain many of the characterizing species occur in the Mediterranean (see resilience section Sardá et al., 1999; Sardá et al., 2000), where temperatures are higher than experienced in the UK. It is considered likely, therefore, that a chronic change in temperature at the pressure benchmark would be tolerated by species with a wide distribution or that some species or groups of species would be resistant. An acute change may exceed thermal tolerances or lead to spawning or other biological effects. These effects may be sub-lethal or result in the removal of only a proportion of less tolerant species. Biotope resistance is therefore assessed as ‘Medium’ and resilience is assessed as ‘High’. Biotope sensitivity is therefore assessed as ‘Low’.
Davenport & Davenport (2005) demonstrated that the limits of thermal tolerance to high and low temperatures reflect the distribution of intertidal macroinvertebrate species. Species that occur highest on the shore are more tolerant of a wider range of temperatures than species that occurred low on the shore or subtidally. As subtidal biotopes are less exposed to temperature fluctuations the characterizing species may be less able to tolerate temperature fluctuations.

Long-term analysis of the North Sea pelagic system has identified yearly variations in larval abundance of Echinodermata, Arthropoda, and Mollusca larvae that correlate with sea surface temperatures. Larvae of benthic echinoderms and decapod crustaceans increased after the mid-1980s, coincident with a rise in North Sea sea surface temperature, whereas bivalve larvae underwent a reduction (Kirby et al., 2008). A decrease in temperature may alter larval supply and in the long-term, and over large spatial scales, may result in changes in community composition.

Sensitivity assessment. Many of the characterizing species are found in more northern waters than the UK and may be adapted to colder temperatures. Plankton studies suggest that colder waters may favour bivalve larvae. An acute change may exceed thermal tolerances or lead to spawning or other biological effects. These effects may be sub-lethal or remove only a proportion of less tolerant species. Biotope resistance is therefore assessed as ‘Medium’ and resilience is assessed as ‘High’. Biotope sensitivity is therefore assessed as ‘Low’.

The assessed biotope occurs in full salinity (30-35 ppt) (JNCC, 2015). A change at the pressure benchmark therefore refers to a change to full salinity. No directly relevant evidence was found to assess this pressure. A study from the Canary Islands indicates that exposure to high salinity effluents (47-50 psu) from desalination plants alter the structure of biological assemblages, reducing species richness and abundance (Riera et al., 2012). Bivalves and amphipods appear to be less tolerant of increased salinity than polychaetes and were largely absent at the point of discharge. Polychaetes, including species or genera that occur in this biotope, such as Spio filicornis, Glycera spp. and Lumbrineris sp., were present at the discharge point (Riera et al., 2012). The ophiuroid Amphipholis squamata has been recorded in areas of high salinity (52-55 ppt) in the Arabian Gulf (Price, 1982), indicating local acclimation may be possible.

Sensitivity assessment. High saline effluents alter the structure of biological assemblages. Polychaete species may be more tolerant than bivalves so that an increase in salinity may lead to a shift in community composition. Biotope resistance is therefore assessed as ‘Low’ and resilience as ‘Medium’, as bivalve recovery may depend on episodic recruitment. Biotope sensitivity is assessed as ‘Medium’.

Species tolerances to decreases in salinity are likely to vary but changes in sensitivity are likely to result in changes in species richness and abundance with some shift in species composition. Biotope resistance is therefore assessed as ‘Low’ and resilience as ‘Medium’, as
bivalve recovery may depend on episodic recruitment. Biotope sensitivity is assessed as ‘Medium’.

<table>
<thead>
<tr>
<th>Water flow (tidal current) changes (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Low C: NR</td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

This biotope is recorded in areas where tidal flow varies between moderately strong (0.5-1.5 m/s) and weak (>0.5 m/s) (JNCC, 2015). Sands are less cohesive than mud sediments and a change in water flow at the pressure benchmark may alter sediment transport patterns within the biotope. Hjulström (1939), concluded that fine sand (particle diameter of 0.3-0.6 mm) was easiest to erode and required a mean velocity of 0.2 m/s. Erosion and deposition of particles greater than 0.5 mm require a velocity > 0.2 m/s to alter the habitat. The topography of this habitat is shaped by currents and wave action that influence the formation of ripples in the sediment. Specific fauna may be associated with troughs and crests of these bedforms. may form following an increase in water flow, or disappear following a reduction in flow.

Sensitivity assessment. This biotope occurs in areas subject to moderately strong water flows and these are a key factor maintaining the clean sand habitat. Changes in water flow may alter the topography of the habitat and may cause some shifts in abundance. However, a change at the pressure benchmark (increase or decrease) is unlikely to affect biotopes that occur in mid-range flows and biotope resistance is therefore assessed as ‘High’ and resilience is assessed as ‘High’ so that the biotope is considered to be ‘Not sensitive’.

<table>
<thead>
<tr>
<th>Emergence regime changes</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NR A: NR C: NR</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
</tbody>
</table>

Changes in emergence are 'Not relevant' to this biotope which is restricted to fully subtidal habitats.

<table>
<thead>
<tr>
<th>Wave exposure changes (local)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: Low C: Low</td>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
</tr>
</tbody>
</table>

As this biotope occurs in sublittoral habitats, it is not directly exposed to the action of breaking waves. Associated polychaete species that burrow are protected within the sediment but the characterizing bivalves would be exposed to oscillatory water flows at the seabed. They and other associated species may be indirectly affected by changes in water movement where these impact the supply of food or larvae or other processes. No specific evidence was found to assess this pressure.

Sensitivity assessment. The range of wave exposures experienced by this biotope and similar infralittoral and circalittoral biotopes is considered to indicate, by proxy, that the biotope would have ‘High’ resistance and by default ‘High’ resilience to a change in significant wave height at the pressure benchmark. The biotope is therefore classed as ‘Not sensitive’.

Chemical Pressures

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
</table>

https://www.marlin.ac.uk/habitats/detail/62
Transition elements & organo-metal contamination

<table>
<thead>
<tr>
<th></th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is Not assessed but evidence is presented where available.

The capacity of bivalves to accumulate heavy metals in their tissues, far in excess of environmental levels, is well known. Reactions to sub-lethal levels of heavy metal stressors include siphon retraction, valve closure, inhibition of byssal thread production, disruption of burrowing behaviour, inhibition of respiration, inhibition of filtration rate, inhibition of protein synthesis and suppressed growth (see review by Aberkali & Trueman, 1985). Stirling (1975) investigated the effect of exposure to copper on *Tellina tenuis*. The 96 hour LC$_{50}$ for Cu was 1000 µg/l. Exposure to Cu concentrations of 250 µg/l and above inhibited burrowing behaviour and would presumably result in greater vulnerability to predators. Similarly, burial of the venerid bivalve, *Venerupis senegalensis*, was inhibited by copper spiked sediments, and at very high concentrations, clams closed up and did not bury at all (Kaschl & Carballeira, 1999). The copper 10 day LC$_{50}$ for *Venerupis senegalensis* was found to be 88 µg/l in sandy sediments (Kaschl & Carballeira, 1999).

Echinoderms are also regarded as being intolerant of heavy metals (e.g. Bryan, 1984; Kinne, 1984) while polychaetes are tolerant (Bryan, 1984).

Hydrocarbon & PAH contamination

<table>
<thead>
<tr>
<th></th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is Not assessed but evidence is presented where available.

Suchanek (1993) reviewed the effects of oil on bivalves. Generally, contact with oil causes an increase in energy expenditure and a decrease in feeding rate, resulting in less energy available for growth and reproduction. Sublethal concentrations of hydrocarbons also reduce byssal thread production (thus weakening attachment) and infaunal burrowing rates. Conan (1982) investigated the long-term effects of the *Amoco Cadiz* oil spill at St Efflam beach in France. It was estimated that the delayed mortality effects on sand and mud biotas were 1.4 times as large as the immediate effects. *Fabulina fabula* (studied as *Tellina fabula*) started to disappear from the intertidal zone a few months after the spill and from then on was restricted to subtidal levels. In the following 2 years, recruitment of *Fabulina fabula* was very much reduced. The author commented that, in the long-term, the biotas most severely affected by oil spills are low energy sandy and muddy shores, bays and estuaries. In such places, populations of species with long and short-term life expectancies (e.g. *Fabulina fabula*, *Echinocardium cordatum* and *Ampelisca* sp.) either vanished or displayed long-term decline following the *Amoco Cadiz* oil spill. Polychaetes, however, including *Nephtys hombergii*, cirratulids and capitellids were largely unaffected.

Dauvin (1998) reported the effects of the *Amoco Cadiz* spill on the fine sand community in the Bay of Morlaix. Reductions in abundance, biomass and production of the community were very evident through the disappearance of the dominant populations of the amphipods *Ampelisca* sp. which are very intolerant of oil contamination. 2 weeks after the spill, the level of hydrocarbons in subtidal sediments reached 200 ppm (Dauvin, 1984; cited in Poggiale & Dauvin, 2001). This caused the disappearance of the *Ampelisca* populations, leaving behind a single species, *Ampelisca sarsi*, in very low densities. The sediment rapidly depolluted and in 1981 benthic recruitment occurred in normal conditions (Dauvin, 1998). However, the recovery of the *Ampelisca* populations took up to
15 years. This was probably due to the amphipods' low fecundity, lack of pelagic larvae and the absence of local unperturbed source populations (Poggiale & Dauvin, 2001).

Echinoderms also seem to be especially intolerant of the toxic effects of oil, probably because of the large amount of exposed epidermis (Suchanek, 1993). The high intolerance of Echinocardium cordatum to hydrocarbons was seen by the mass mortality of animals, down to about 20m depth, shortly after the Amoco Cadiz oil spill (Cabioch et al., 1978).

Dauvin (2000) The muddy fine sand Abra alba-Melinna palmata community from the Bay of Morlaix (western English Channel) was strongly polluted by hydrocarbons from the Amoco Cadiz oil spill in April 1978. Long-term changes of this community (1977-1996) showed that it was weakly affected by the spill. This was due to the low number and low abundance of sensitive species present on the community in normal conditions. Polychaetes, such as Chaetozone setosa dominated the community, supporting high levels of organic matter. Only two opportunistic polychaetes Mediomastus fragilis and Tharyx marioni increased in abundance just after the spill.

Glyceria spp. were described by Hiscock et al. (2004; 2005, from Levell et al., 1989) as a very tolerant taxa, found in enhanced abundances in the transitional zone along hydrocarbon contamination gradients surrounding oil platforms.

The Braer oil spill in Shetland in 1993 provided an opportunity to identify species that increased or declined in abundance where oiling occurred. Severe weather conditions meant that oil was incorporated into sediments. Kingston et al. (1995) noted that the congener Lumbrineris gracilis (from Hiscock et al., 2004b) declined at oiled sites.

Diaz-Castaneda et al. (1989) looked at colonization of defaunated and polluted sediments in Dunkerque harbour. The sediment was polluted with both heavy metals and oil. Capitella capitata was generally the first polychaete to colonize the polluted sediment. Spio flicornis took between 7 weeks and 3 months to appear in the sediment suggesting it is tolerant of oil pollution.

Synthetic compound contamination

<table>
<thead>
<tr>
<th>Synthetic compound contamination</th>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is Not assessed but evidence is presented where available.

Stirling (1975) investigated the effects of phenol, a non-persistent, semi-synthetic organic pollutant, on Tellina tenuis. Exposure to phenol produced a measurable effect on burrowing at all concentrations tested, i.e. 50 mg/l and stronger. Sub-lethal effects of exposure to phenol included delayed burrowing and valve adduction to exclude the pollutant from the mantle cavity. After exposure to 100 mg/l for 24 hours, the majority of animals were extended from their shells and unresponsive to tactile stimulation. Following replacement of the phenol solution with clean seawater, good recovery was exhibited after 2 days for animals exposed to 50 mg/l and some recovery occurred after 4 days for animals exposed to 100 mg/l.

Similarly, no evidence was found directly relating to the effects of synthetic chemicals on Magelona mirabilis. However, there is evidence from other polychaete species. Collier & Pinn (1998) investigated the effect on the benthos of ivermectin, a feed additive treatment for infestations of sea-lice on farmed salmonids. The polychaete Hediste diversicolor was particularly susceptible, exhibiting 100% mortality within 14 days when exposed to 8 mg/m² of ivermectin in a microcosm. Arenicola marina was also intolerant of ivermectin through the ingestion of contaminated sediment.
Abra alba and Nucula nitidosa in circalittoral muddy sand or slightly mixed sediment - Marine Life Information Network

(Thain et al., 1998; cited in Collier & Pinn, 1998) and it was suggested that deposit feeding was an important route for exposure to toxins. Beaumont et al. (1989) investigated the effects of tri-butyl tin (TBT) on benthic organisms. At concentrations of 1-3 µg/l there was no significant effect on the abundance of Hediste diversicolor after 9 weeks in a microcosm. However, no juvenile polychaetes were retrieved from the substratum and hence there is some evidence that TBT had an effect on the larval and/or juvenile stages.

Detergents used to disperse oil from the Torrey Canyon oil spill caused mass mortalities of Echinocardium cordatum (Smith, 1968) and its intolerance to TBT is similar to that of other benthic organisms with LC$_{50}$ values of 222ng Sn/l in pore water and 1594ng Sn/g dry weight of sediment (Stronkhorst et al., 1999). Gammaridean amphipods have also been reported to be intolerant of TBT with 10 day LC$_{50}$ values of 1-48 ng/l (Meador et al., 1993).

Radionuclide contamination

<table>
<thead>
<tr>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
<th>No evidence (NEv)</th>
</tr>
</thead>
</table>

No evidence.

Introduction of other substances

<table>
<thead>
<tr>
<th>Not Assessed (NA)</th>
<th>Not assessed (NA)</th>
<th>Not assessed (NA)</th>
</tr>
</thead>
</table>

This pressure is Not assessed.

De-oxygenation

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: High A: Medium C: NR</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: High A: Low C: Low</td>
</tr>
</tbody>
</table>

Riedel et al. (2012) assessed the response of benthic macrofauna to hypoxia advancing to anoxia in the Mediterranean. The hypoxic and anoxic conditions were created for 3-4 days in a box that enclosed in-situ sediments. In general molluscs were more resistant than polychaetes, with 90% surviving hypoxia and anoxia, whereas only 10% of polychaetes survived. Exposed individual Timoclea ovata and Tellina serrata survived the experiment but the exposed Glyceria spp. died. In general epifauna were more sensitive than infauna, mobile species more sensitive than sedentary species and predatory species more sensitive than suspension and deposit feeders. The test conditions did not lead to the production of hydrogen sulphide which may have reduced mortalities compared to some observations.

Further evidence of sensitivity was available for some of the polychaete species associated with this biotope. Rabalais et al. (2001) observed that hypoxic conditions in the north Coast of the Gulf of Mexico (oxygen concentrations from 1.5 to 1 mg/l (1 to 0.7 ml/l) led to the emergence of Lumbrineris sp. from the substrate these then lie motionless on the surface. Glyceria alba was found to be able to tolerate periods of anoxia resulting from inputs of organic rich material from a wood pulp and paper mill in Loch Eil (Scotland) (Blackstock & Barnes, 1982). Nierman et al. (1990) reported changes in a fine sand community for the German Bight in an area with regular seasonal hypoxia. In 1983, oxygen levels were exceptionally low (<3>2/l) in large areas and <1>2/l in some areas. Species richness decreased by 30-50% and overall biomass fell. Owenia fusiformis was reduced in abundance significantly by the hypoxia Spiophanes bombyx was found in small numbers at some, but not all areas, during the period of hypoxia. Once oxygen levels returned to normal Spiophanes bombyx increased in abundance; the evidence suggests that at least some
individuals would survive hypoxic conditions.

Sensitivity assessment. Riedel et al. (2012) provide evidence on general sensitivity trends. The characterizing bivalves are likely to survive hypoxia at the pressure benchmark although the polychaetes present, particularly the mobile predatory species such as *Glycera* and *Nephtys* may be less tolerant. As the biotope is characterized by bivalves and polychaetes, resistance is assessed as ‘Low’ and resilience as ‘High’ based on migration, water transport of adults and recolonization by pelagic larvae. Biotope sensitivity is assessed as ‘Low’.

Nutrient enrichment

<table>
<thead>
<tr>
<th></th>
<th>Q:</th>
<th>A:</th>
<th>C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
<td></td>
</tr>
</tbody>
</table>

This pressure relates to increased levels of nitrogen, phosphorus and silicon in the marine environment compared to background concentrations. The pressure benchmark is set at compliance with Water Framework Directive (WFD) criteria for good status, based on nitrogen concentration (UKTAG, 2014).

Bivalves, polychaetes and other invertebrate species are unlikely to be directly affected by changes in nutrient enrichment.

Sensitivity assessment. As this biotope is structured by the sediments and water flow rather than nutrient enrichment and is not characterized by macroalgae (although some may be present), the biotope is considered to have ‘High’ resistance to this pressure and ‘High’ resilience, (by default) and is assessed as ‘Not sensitive’.

Organic enrichment

<table>
<thead>
<tr>
<th></th>
<th>Q:</th>
<th>A:</th>
<th>C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Not sensitive</td>
<td></td>
</tr>
</tbody>
</table>

At the pressure benchmark, organic inputs are likely to represent a food subsidy for the associated deposit feeding species and are unlikely to significantly affect the structure of the biological assemblage or impact the physical habitat. Biotope sensitivity is therefore assessed as ‘High’ and resilience as ‘High’ (by default), and the biotope is therefore considered to be ‘Not sensitive’.

Physical Pressures

<table>
<thead>
<tr>
<th>Physical loss (to land or freshwater habitat)</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Very Low</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no specific evidence is described, confidence in this assessment is ‘High’ due to the incontrovertible nature of this pressure.
The biotope is characterized by the sedimentary habitat (JNCC, 2015), so a change to an artificial or rock substratum would alter the character of the biotope leading to reclassification and the loss of the sedimentary community including the characterizing bivalves, polychaetes and echinoderms that live buried within the sediment.

Sensitivity assessment. Based on the loss of the biotope, resistance is assessed as ‘None’, recovery is assessed as ‘Very Low’ (as the change at the pressure benchmark is permanent), and sensitivity is assessed as ‘High’.

<table>
<thead>
<tr>
<th>Physical change (to another sediment type)</th>
<th>Low</th>
<th>Very Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q:</td>
<td>High</td>
<td>A: High</td>
<td>C: High</td>
</tr>
<tr>
<td>Q:</td>
<td>High</td>
<td>A: High</td>
<td>C: High</td>
</tr>
<tr>
<td>Q:</td>
<td>High</td>
<td>A: Low</td>
<td>C: Medium</td>
</tr>
</tbody>
</table>

This biotope is found in medium to very fine sand with some silt (JNCC, 2015). The change referred to at the pressure benchmark is a change in sediment classification (based on Long, 2006) rather than a change in the finer-scale original Folk categories (Folk, 1954). For sand sediments, resistance is assessed based on a change to either mixed sediments or mud and sandy muds.

Sediment type is a key factor structuring the biological assemblage present in the biotope. Surveys over sediment gradients and before-and-after impact studies from aggregate extraction sites where sediments have been altered indicate patterns in change. The biotope classification (JNCC, 2015) provides information on the sediment types where biotopes are found and indicates likely patterns in change if the sediment were to alter.

Differences in biotope assemblages in areas of different sediment type are likely to be driven by pre and post recruitment processes. Sediment selectivity by larvae will influence levels of settlement and distribution patterns. Snelgrove et al. (1999) demonstrated that *Spisula solidissima*, selected coarse sand over muddy sand, and capitellid polychaetes selected muddy sand over coarse sand, regardless of site. Both larvae selected sediments typical of adult habitats, however, some species were nonselective (Snelgrove et al., 1999) and presumably in unfavourable habitats post recruitment, mortality will result for species that occur in a restricted range of habitats. Some species may, however, be present in a range of sediments. Post-settlement migration and selectivity also occurred on small scales (Snelgrove et al., 1999).

Cooper et al. (2011) found that characterizing species from sand dominated sediments were equally likely to be found in gravel dominated sediments, and an increase in sediment coarseness may not result in loss of characterizing species but biotope classification may revert to the biotope SS.SCS.CCS.MedLumVen, which occurs in gravels (JNCC, 2015).

Desprez (2000) found that a change of habitat to fine sands from coarse sands and gravels (from deposition of screened sand following aggregate extraction) changed the biological communities present. *Tellina pygmaea* and *Nephtys cirrosa* dominated the fine sand community. Dominant species of coarse sands, *Echinocyamus pusillus* and *Amphipholis squamata*, were poorly represented and the characteristic species of gravels and shingles were absent (Desprez, 2000).

Sensitivity assessment. A change to finer, muddy and mixed sediments is likely to reduce the abundance of the characterizing *Tellina spp.*, venerid bivalves and other bivalves such as *Spisula solida*, and favour polychaetes. Such changes would lead to biotope reclassification. Biotope resistance is therefore assessed as ‘Low’ (as some species may remain), resilience is Very low (the pressure is a permanent change) and sensitivity is assessed as High.
Habitat structure changes - removal of substratum (extraction)

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Q: High A: High C: High
Q: High A: Low C: Medium
Q: High A: High C: High

Most of the animals that occur in this biotope are shallowly buried and extraction of the sediment will remove the biological assemblage.

Sensitivity assessment. Resistance is assessed as ‘None’ as extraction of the sediment will remove the characterizing and associated species present. Resilience is assessed as ‘Medium’ as some species may require longer than two years to re-establish (see resilience section) and sediments may need to recover (where exposed layers are different). Biotope sensitivity is therefore assessed as ‘Medium’.

Abrasion/disturbance of the surface of the substratum or seabed

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Q: Low A: NR C: NR
Q: High A: Medium C: High
Q: Low A: Low C: Low

Abrasion is likely to damage epifauna and flora and may damage a proportion of the characterizing species, biotope resistance is therefore assessed as ‘Medium’. Resilience is assessed as ‘High’ as opportunistic species are likely to recruit rapidly and some damaged characterizing species may recover or recolonize. Biotope sensitivity is assessed as ‘Low’.

Penetration or disturbance of the substratum subsurface

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Q: High A: High C: Medium
Q: High A: Medium C: High
Q: High A: High C: Medium

The epifauna and infaunal assemblages of both stable and dynamic fine sands are susceptible to direct physical disturbance from towed demersal gears and dredges which penetrate and disturb the sediment e.g. Eleftheriou & Robertson, 1992; Kaiser et al., 1998; Robinson & Richardson, 1998; Schwinghamer et al., 1996; Freese et al., 1999; Prena et al., 1999; Bergman & Van Santbrink 2000a,b; Tuck et al., 2000; Kenchington et al., 2001; Gilkinson et al., 2005). In general, fishing using towed gears results in the mortality of non-target organisms either through physical damage inflicted by the passage of the trawl or indirectly by disturbance, damage, exposure and subsequent predation. Beam trawling, for example, decreases the density of common echinoderms, polychaetes and molluscs (Bergman & Hup, 1992) and decreases the density and diversity of epifauna in stable sand habitats (Kaiser & Spencer, 1996).

Gilkinson et al. (1998) simulated the physical interaction of otter trawl doors with the seabed in a laboratory test tank using a full-scale otter trawl door model. Between 58% and 70% of the bivalves in the scour path that were originally buried were completely or partially exposed at the test bed surface. However, only two out of a total of 42 specimens showed major damage. The pressure wave associated with the otter door pushes small bivalves out of the way without damaging them. Where species can rapidly burrow and reposition (typically within species occurring in unstable habitats) before predation mortality rates will be relatively low. These experimental observations are supported by diver observations of fauna dislodged by a hydraulic dredge used to catch Ensis spp. Small bivalves were found in the trawl tracks that had been dislodged from the sediments, including the venerid bivalves Dosinia exoleta, Chamelea striatula and the hatchet shell Lucinoma borealis. These were usually intact (Hauton et al., 2003a) and could potentially reburrow.
Larger, fragile species are more likely to be damaged by sediment penetration and disturbance than smaller species (Tillin et al., 2006). Bergman & van Santbrink (2000a,b) suggested that the megafauna were amongst the species most vulnerable to direct mortality due to bottom trawling in sandy sediments. Stomach analysis of fish caught scavenging in the tracks of beam trawls found parts of Spatangus purpureus and Ensis spp. indicating that these had been damaged and exposed by the trawl (Kaiser & Spencer, 1994a). Capasso et al. (2010) compared benthic survey datasets from 1895 and 2007 for an area in the English Channel. Although methodological differences limit direct comparison, the datasets appear to show that large, fragile urchin species including Echinus esculentus, Spatangus purpureus and Psammechinus miliaris and larger bivalves had decreased in abundance. Small, mobile species such as amphipods and small errant and predatory polychaetes (Nephtys, Glycera, Lumbrineris) appeared to have increased (Capasso et al., 2010). The area is subject to beam trawling and scallop dredging and the observed species changes would correspond with predicted changes following physical disturbance. Two small species: Timoclea ovata and Echinocyamus pusillus had increased in abundance between the two periods. Sensitivity assessment. The trawling studies and the comparative study by Capasso et al. (2010) suggest that the biological assemblage present in this biotope is characterized by species that are relatively tolerant of penetration and disturbance of the sediments. Either species are robust or buried within sediments or are adapted to habitats with frequent disturbance (natural or anthropogenic) and recover quickly. The results suggest that a reduction in physical disturbance may lead to the development of a community with larger, more fragile species including large bivalves. Biotope resistance is assessed as ‘Medium’ as some species will be displaced and may be predated or injured and killed. Biotope resilience is assessed as ‘High’ as most species will recover rapidly and the biotope is likely to still be classified as the same type following disturbance. Biotope sensitivity is therefore assessed as ‘Low’. Changes in suspended solids (water clarity)

<table>
<thead>
<tr>
<th>Level</th>
<th>Q: Low A: NR C: NR</th>
<th>Q: High A: Low C: Medium</th>
<th>Q: Low A: Low C: Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A change in turbidity at the pressure benchmark is assessed as an increase from intermediate 10-100 mg/l to medium (100-300 mg/l) and a change to clear (<10 mg/l). An increase or decrease in turbidity may affect primary production in the water column and indirectly alter the availability of phytoplankton food available to species in filter feeding mode. However, phytoplankton will also be transported from distant areas and so the effect of increased turbidity may be mitigated to some extent. According to Widdows et al. (1979), growth of filter-feeding bivalves may be impaired at suspended particulate matter (SPM) concentrations >250 mg/l. Sensitivity assessment. No direct evidence was found to assess impacts on the characterizing and associated species. The characterizing, suspension feeding bivalves are not predicted to be sensitive to decreases in turbidity and may be exposed to, and tolerant of, short-term increases in turbidity following sediment mobilization by storms and other events. An increase in suspended solids, at the pressure benchmark may have negative impacts on growth and fecundity by reducing filter feeding efficiency and imposing costs on clearing. Biotope resistance is assessed as ‘Medium’ as there may be some shift in the structure of the biological assemblage and resilience is assessed as ‘High’ (following restoration of typical conditions). Biotope sensitivity is assessed as ‘Low’.

Smothering and siltation rate changes (light)

<table>
<thead>
<tr>
<th>Level</th>
<th>Q: High A: Medium C: Medium</th>
<th>Q: High A: Low C: Medium</th>
<th>Q: High A: Low C: Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Addition of fine material will alter the character of this habitat by covering it with a layer of dissimilar sediment and will reduce suitability for the species associated with this feature. Recovery will depend on the rate of sediment mixing or removal of the overburden, either naturally or through human activities. Recovery to a recognisable form of the original biotope will not take place until this has happened. In areas where the local hydrodynamic conditions are unaffected, fine particles will be removed by wave action moderating the impact of this pressure. The rate of habitat restoration would be site-specific and would be influenced by the type of siltation and rate. Long-term or permanent addition of fine particles would lead to re-classification of this biotope type (see physical change pressures). The additions of silts to a Spisula solida bed in Waterford Harbour (Republic of Ireland) from earthworks further upstream, for example, reduced the extent of the bed (Fahy et al., 2003). No information was provided on the depth of any deposits.

Most bivalve species are capable of burrowing through sediment to feed, e.g. Abra alba are capable of upwardly migrating if lightly buried by additional sediment (Schafer, 1972). There may be an energetic cost expended by species to either re-establish burrow openings, to self-clean feeding apparatus or to move up through the sediment, though this is not likely to be significant. Most animals will be able to reburrow or move up through the sediment within hours or days. Bijkerk (1988, results cited from Essink, 1999) indicated that the maximal overburden through which small bivalves could migrate was 20 cm in sand for Donax and approximately 40 cm in mud for Tellina sp. and approximately 50 cm in sand. No further information was available on the rates of survivorship or the time taken to reach the surface. Little direct evidence was found to assess the impact of this pressure at the benchmark level. Powilleit et al. (2009) studied the response of the polychaete Nephtys hombergii to smothering. This species successfully migrated to the surface of 32–41 cm deposited sediment layer of till or sand/till mixture and restored contact with the overlying water. The high escape potential could partly be explained by the heterogeneous texture of the till and sand/till mixture with ‘voids’. While crawling upward to the new sediment surfaces burrowing velocities of up to 20 cm/day were recorded for Nephtys hombergii. Similarly, Bijkerk (1988, results cited from Essink 1999) indicated that the maximal overburden through which species could migrate was 60 cm through mud for Nephtys and 90 cm through sand. No further information was available on the rates of survivorship or the time taken to reach the surface.

Sensitivity assessment. Bivalves and polychaetes and other species are likely to be able to survive short periods under sediments and to reposition. However, as the pressure benchmark refers to fine material, this may be cohesive and species characteristic of sandy habitats may be less adapted to move through this than sands. Biotope resistance is assessed as 'Medium' as some mortality of characterizing and associated species may occur. Biotope resilience is assessed as 'High' and biotope sensitivity is assessed as 'Low'.

Smothering and siltation rate changes (heavy)

<table>
<thead>
<tr>
<th>Q: High</th>
<th>A: Medium</th>
<th>C: NR</th>
<th>Q: High</th>
<th>A: Low</th>
<th>C: Medium</th>
<th>Q: High</th>
<th>A: Low</th>
<th>C: Low</th>
</tr>
</thead>
</table>

Bijkerk (1988, results cited from Essink, 1999) indicated that the maximal overburden through which small bivalves could migrate was 20 cm in sand for Donax and approximately 40 cm in mud for Tellina sp. and approximately 50 cm in sand. No further information was available on the rates of survivorship or the time taken to reach the surface.

Sensitivity assessment. The character of the overburden is an important factor determining the degree of vertical migration of buried bivalves. Individuals are more likely to escape from a covering similar to the sediments in which the species is found than a different type. Resistance is
assessed as 'Low' as few individuals are likely to reposition. Resilience is assessed as 'Medium' and sensitivity is assessed as 'Medium'.

<table>
<thead>
<tr>
<th>Biological Pressures</th>
<th>Resistance</th>
<th>Resilience</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter</td>
<td>Not Assessed (NA)</td>
<td>Not assessed (NA)</td>
<td>Not assessed (NA)</td>
</tr>
<tr>
<td>Electromagnetic changes</td>
<td>No evidence (NEv)</td>
<td>No evidence (NEv)</td>
<td>No evidence (NEv)</td>
</tr>
<tr>
<td>Underwater noise changes</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
<tr>
<td>Introduction of light or shading</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
<tr>
<td>Barrier to species movement</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
<tr>
<td>Death or injury by collision</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
<tr>
<td>Visual disturbance</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
<td>Not relevant (NR)</td>
</tr>
</tbody>
</table>

Not assessed. Not relevant. No evidence. Not relevant. No information was found concerning the intolerance of the biotope or the characterizing species to noise. The siphons of bivalves and palps of polychaetes are likely to detect vibrations and are probably withdrawn as a predator avoidance mechanism. However, it is unlikely that the biotope will be affected by noise or vibrations caused by noise at the level of the benchmark.

Not relevant. NB. Collision by grounding vessels is addressed under ‘surface abrasion.”
Key characterizing species within this biotope are not cultivated or translocated. This pressure is therefore considered ‘Not relevant’ to this biotope group.

Introduction or spread of invasive non-indigenous species

Few invasive non-indigenous species may be able to colonize mobile sands, due to the high-levels of sediment disturbance. However, two species may be of concern. The slipper limpet *Crepidula fornicata* may settle on stones in substrates and hard surfaces such as bivalve shells and can sometimes form dense carpets which can smother bivalves and alter the seabed, making the habitat unsuitable for larval settlement. Dense aggregations trap suspended silt, faeces and pseudofaeces altering the benthic habitat. Where slipper limpet stacks are abundant, few other bivalves can live amongst them (Fretter & Graham, 1981; Blanchard, 1997). Muddy and mixed sediments in wave sheltered areas are probably optimal but *Crepidula fornicata* has been recorded from a wide variety of habitats including clean sands and areas subject to moderately strong tidal streams (Blanchard, 1997; De Montaudouin & Sauriau, 1999). Bohn et al. (2015) report that in the Milford Haven Waterway (MHW) in south-west Wales, UK, subtidally, highest densities were found in areas of high gravel content (grain sizes 16-256 mm), suggesting that the availability of this substrata type is beneficial for its establishment.

The colonial ascidian *Didemnum vexillum* is present in the UK but appears to be restricted to artificial surfaces such as pontoons, this species may, however, have the potential to colonize and smother offshore gravel habitats. Valentine et al., (2007) describe how *Didemnum* sp. appear to have rapidly colonized gravel areas on the Georges Bank (US/Canada boundary). Colonies can coalesce to form large mats that may cover more than 50% of the seabed in parts. Areas of mobile sand bordered communities of *Didemnum* sp. and these, therefore, do not appear to be suitable habitats (Valentine et al., 2007).

Although not currently established in UK waters, the whelk *Rapana venosa*, may spread to UK habitats from Europe. Both *Rapana venosa* and the introduced oyster drill *Urosalpinx cinerea* both predate on bivalves and could therefore negatively affect the characterizing bivalve species.

Sensitivity assessment. The sediments characterizing this biotope are likely to too mobile or otherwise unsuitable for most of the recorded invasive non-indigenous species currently recorded in the UK. The slipper limpet may colonize this habitat resulting in habitat change and potentially classification to the biotope which is found in similar habitats SS.SMx.IMx.CreAsAn. *Didemnum* sp. and non-native predatory gastropods may also emerge as a threat to this biotope, although more mobile sands may exclude *Didemnum*. Based on *Crepidula fornicata* biotope resistance is assessed as ‘None’ and resilience as ‘Very low’ (as removal of established non-native is unlikely), so that biotope sensitivity is assessed as ‘High’.
No evidence was found for the characterizing polychaete species. Populations of bivalve species may be subject to a variety of diseases and parasites but evidence for the characterizing bivalves is limited. Berilli et al. (2000) conducted a parasitological survey of the bivalve *Chamelea gallina* in natural beds of the Adriatic Sea, where anomalous mortalities had been observed in 1997-1999. The occurrence of protozoans belonging to the families Porosporidae, Hemispeiridae and Trichodiniidae was recorded. Porosporidae of the genus *Nematopsis*, present with 4 species, showed a prevalence of 100%. The results suggested that severe infections of protozoans of the genus *Nematopsis* could cause a not negligible respiratory sufferance, with a possible role in the decline of the natural banks of *Chamelea gallina* (Berilli et al., 2000).

Bacterial diseases are frequently found in molluscs during their larval stages, but seem to be relatively insignificant in populations of adult animals (López-Flores et al., 2004). This may be due to the primary defence mechanisms of molluscs, phagocytosis and encapsulation, which fight against small-sized pathogens, and whose resistance may be age related (Sinderman, 1990; López-Flores et al., 2004).

Individuals of *Fabulina fabula* from Boulogne-sur-Mer (studied as *Angulus fabula*) were infected with the trematode parasite *Gymnophallus strigatus*, causing erosion of the shell (Giard, 1897, cited in Kinne, 1983).

Sensitivity assessments. Pathogens may cause mortality and there may be a minor decline in species richness or abundance in the biotope. As there is no evidence for mass mortalities of characterizing species that would alter biotope classification biotope resistance is assessed as ‘Medium’. Biotope resilience is assessed as ‘High’ as changes may fall within natural population variability and a recognizable biotope is likely to be present after two years. Biotope sensitivity is therefore assessed as ‘Low’.

Removal of target species

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Low A: NR C: NR</td>
<td>Q: High A: Low C: Medium</td>
<td>Q: Low A: Low C: Low</td>
</tr>
</tbody>
</table>

A number of the larger bivalve species that may be associated with this biotope group are targeted by commercial fishers in some parts of their range. These include *Chamelea gallina* (Ballarín et al., 2003); *Spisula solida* (Fahy et al., 2003; Joaquim et al., 2008); *Glycymeris glycymeris* and *Paphia* spp. (Savina & Pouvreau, 2004); *Ensis* spp., *Donax* spp. and *Pharus* spp. (Chicharo et al., 2002). In targeted areas, the populations of fished bivalves may be depleted, for example, fishing has led to declines in *Spisula solida* (Joaquim et al., 2008; Fahy et al., 2003).

Sensitivity assessment. In general dredges that are used to target bivalves are likely to be efficient at removing targeted species. Removal of commercially targeted bivalves may lead to biotope reclassification based on the dominance of polychaetes to a similar biotope Biotope resistance, based on the characterizing bivalves is assessed as ‘Low’. Undersized juveniles may be returned and can re-burrow but are likely to suffer from stress. Targeted removal of adult bivalves within the biotope may allow successful recruitment of juveniles where intra-specific competition for space and food and possibly consumption of larvae has prevented successful spatfall. Some species such as *Glycymeris glycymeris* are characteristic of habitats with low levels of competition and may benefit from removal of other species. Biotope resilience is assessed as ‘Medium’, as recruitment in many bivalve species is episodic and unpredictable. Biotope sensitivity is therefore assessed as ‘Medium’.
Species within the biotope are not functionally dependent on each other, although biological interactions will play a role in structuring the biological assemblage through predation and competition. Removal of adults may support recruitment of juvenile bivalves by reducing competition for space and consumption of larvae.

Removal of species would also reduce the ecological services provided by these species such as secondary production and nutrient cycling.

Sensitivity assessment. Species within the biotope are relatively sedentary or slow moving, although the infaunal position may protect some burrowing species from removal. Biotope resistance is therefore assessed as ‘Low’ and resilience as ‘High’, as the habitat is likely to be directly affected by removal and some species will recolonize rapidly, biotope sensitivity is therefore assessed as Low’. Some variability in species recruitment, abundance and composition is natural and therefore a return to a recognizable biotope should occur within 2 years. Repeated chronic removal would, however, impact recovery.
Bibliography

https://www.marlin.ac.uk/habitats/detail/62

Dauvin, J.C. & Gentil, F., 1989. Long-term changes in populations of subtidal bivalves (Abra alba and Abra prismatica) from the Bay of Morlaix (Western English Channel). Marine Biology, 103, 63-73.

Fish, J.D. & Fish, S., 1996. A student’s guide to the seashore. Cambridge: Cambridge University Press.

Hiscock, K., Langmead, O. & Warwick, R., 2004. Identification of seabed indicator species from time-series and other studies to

https://www.marlin.ac.uk/habitats/detail/62

Hunt, J.D., 1925. The food of the bottom fauna of the Plymouth fishing grounds. Journal of the Marine Biological Association of the United Kingdom, 13, 560-599.

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from: https://mhc.jncc.gov.uk/

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from: https://mhc.jncc.gov.uk/

Jorgensen, B.B., 1980. Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos, 32, 68-76.

Kirby, R.R., Beauprè, G. & Lindley, J.A., 2008. Climate-induced effects on the meroplankton and the benthic-pelagic ecology of...
the North Sea. Limnology and Oceanography, 53 (5), 1805.
Nicolaidou, A., 1983. Life history and productivity of Pectinaria koreni Malmgren (Polychaeta). Estuarine, Coastal and Shelf Science,
17, 31-43.

Abra alba

34

https://www.marlin.ac.uk/habitats/detail/62

Date: 2016-07-01

Abra alba and Nucula nitidosa in circalittoral muddy sand or slightly mixed sediment - Marine Life Information Network
(5), 1439-1445.

