Lagoon sea slug (*Tenellia adspersa*)

MarLIN – Marine Life Information Network
Biology and Sensitivity Key Information Review

Nicola White

2008-08-19

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version https://www.marlin.ac.uk/species/detail/1156. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk
(page left blank)
Summary

Description
A tiny nudibranch with few finger-like protrusions, arranged in groups of two or three along each side of the body. The pale brown body is marked with tiny black spots as are the protrusions. It grows up to 8 mm in length.

Recorded distribution in Britain and Ireland
The few British records are from the Firth of Forth, Scotland, near St Osyth, Essex, the Fleet, Dorset, the Bristol Channel, off Pembrokeshire and Liverpool Bay.

Global distribution
Recorded from the eastern and western North Atlantic, Baltic, Mediterranean Sea, Black Sea, Azov Sea, Caspian Sea, Japan, Pacific coast of USA, Brazil

Habitat
Found intertidally and in the shallow sublittoral. A euryhaline species often in harbours, estuaries and canals.

Depth range

See online review for distribution map

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.
Identifying features

- Few cerata arranged in groups of two or three along each side of the body.
- Body pale brown and marked with tiny black spots as are the cerata.
- Digestive gland is pale orange in colour.
- Oral tentacles are small and directed laterally.

Additional information
No text entered

Listed by

Further information sources

Search on:

G NBN WoRMS
Biology review

Taxonomy

- **Phylum**: Mollusca - Snails, slugs, mussels, cockles, clams & squid
- **Order**: Nudibranchia - Naked gilled, shell-less sea slugs
- **Family**: Trinchesiidae
- **Genus**: Tenellia
- **Authority**: (Nordmann, 1845)
- **Recent Synonyms**: Tenellia pallida (Nordmann, 1845) Embletonia pallida (Nordmann, 1845)

Biology

- **Typical abundance**: Moderate density
- **Male size range**: Up to 8mm
- **Male size at maturity**: 3.60mm
- **Female size range**: 3.60mm
- **Female size at maturity**: 3.60mm
- **Growth form**: Lanceolate
- **Growth rate**: Data deficient
- **Body flexibility**:
- **Mobility**:
- **Characteristic feeding method**: No information, Predator
- **Diet/food source**: No information
- **Typically feeds on**: Hydroids, especially %Cordylophora caspia%, Laomeda spp. and %Protohydra leuckarti%
- **Sociability**:
- **Environmental position**: Epifaunal
- **Dependency**: -
- **Supports**: -
- **Is the species harmful?**: Data deficient

Biology information

Tenellia adspersa can rapidly devour hydroid colonies, exhausting its own food supply. It has been suggested that the developmental plasticity and rapid growth of this species enables it to disperse to new locations to find new food.

Habitat preferences

- **Physiographic preferences**: Estuary, Isolated saline water (Lagoon), Enclosed coast / Embayment
- **Biological zone preferences**: Lower eulittoral, Sublittoral fringe, Upper infralittoral
- **Substratum / habitat preferences**: Macroalgae, Cobbles, Pebbles, Small boulders
- **Tidal strength preferences**: Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Weak < 1 knot (<0.5 m/sec.)
- **Wave exposure preferences**: Sheltered, Very sheltered
Salinity preferences: Low (<18 psu), Variable (18-40 psu)

Depth range

Other preferences: No text entered

Migration Pattern: Non-migratory / resident

Habitat Information

Recorded at depths from 1 to 34 m. The species has been observed to survive and breed in salinities from 50 psu to 5.3 psu. The ranges and ecological features of the nudibranch are very similar to the hydroid *Cordylophora caspia* and they co-exist everywhere, which suggests some connection. The wide geographic distribution of *Tenellia adspersa* is probably due to passive transportation of adults and egg masses by *Cordylophora* colonies on ships.

Life history

Adult characteristics

- Reproductive type: Gonochoristic (dioecious)
- Reproductive frequency: Annual protracted
- Fecundity (number of eggs): 11-100
- Generation time: <1 year
- Age at maturity: 19 to 20 days
- Season: Insufficient information
- Life span: <1 year

Larval characteristics

- Larval/propagule type: -
- Larval/juvenile development: Direct development
- Duration of larval stage: No information
- Larval dispersal potential: 100 - 1000 m
- Larval settlement period: Insufficient information

Life history information

Tenellia adspersa has a subannual lifecycle with a short generation time of as little as 20 days when reared at 20 degrees C and 30 ppt on the hydroid *Cordylophora lacustris*. The animals may spawn 3 to 5 times a day with 25 to 50 eggs per spawn (Chester, 1996). The spawn consists of a short, curved, lozenge-shaped mass. The period from spawning to hatching lasts 4-5 days. The method of development varies with the environmental conditions. Metamorphosis normally takes place within the egg capsule, hatching as a juvenile. In animals that have been starved a switch to pelagic non-feeding or planktotrophic development has been observed.
Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

Physical Pressures

<table>
<thead>
<tr>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substratum Loss</td>
<td>High</td>
<td>Very low / none</td>
<td>Very High</td>
</tr>
</tbody>
</table>

The species lives on hydroids attached to rocks, algae or artificial substrates. The loss of the substrate would cause removal of the species and recovery would be very low due to the limited distribution of the host species.

Smothering | High | Very low / none | Very High | Low |

The hydroids on which Tenellia adspersa lives may be killed by smothering, so removing the species food source. Recovery would be low due to the limited distribution of the Tenellia adspersa.

Increase in suspended sediment | Low | High | Low | Low |

The species is probably able to tolerate siltation as it occurs in estuaries and lagoons where siltation naturally occurs. Recovery from any damage could be rapid due to the fast growth and reproductive rates of the species.

Decrease in suspended sediment

Dessication | High | Very low / none | Very High | Low |

The low shore position and soft-bodied nature of this species suggests that it is unlikely to tolerate desiccation. Where the species is exposed to desiccation, individuals are likely to be present deeper at the site, so providing a source for recolonization. Where unaffected individuals are not present recovery would be low due to the species limited distribution.

Increase in emergence regime | High | Very High | Low |

The low shore position and soft-bodied nature of this species suggests that it is unlikely to tolerate emersion as it would suffer desiccation. Where the species is exposed to emersion, individuals are likely to be present deeper at the site, so providing a source for recolonization. Where unaffected individuals are not present recovery would be low due to the species limited distribution.

Decrease in emergence regime

Increase in water flow rate | Tolerant | Not relevant | Not sensitive | Moderate |

The species is normally found at sites of slow water current, but it has been observed to withstand rapid water flow (0.8-2.4m/sec.) as evidenced by animals occupying the lattices of pipe lines.

Decrease in water flow rate
Increase in temperature

Tenellia adspersa can live under a wide range of water temperatures since it occurs in lagoons which undergo great seasonal temperature variation and it occupies a wide geographic range, from the Lofoten Islands to the Mediterranean.

Decrease in temperature

Increase in turbidity

Neither the species or the hydroids on which it lives are dependant on light availability, so it would not be affected by a change in turbidity.

Decrease in turbidity

Increase in wave exposure

The species is largely known from wave sheltered locations, which suggests an inability to tolerate exposed conditions. Recovery would be low due to the limited distribution of the species.

Decrease in wave exposure

Noise

The species probably has very limited capacity for noise perception.

Visual Presence

The species probably has very limited capacity for visual perception.

Abrasion & physical disturbance

The species occurs in the surface hydroid turf and it is soft-bodied so would be easily damaged upon impact. In addition, a passing dredge is likely to damage its substratum (see substratum loss above). Therefore, an intolerance of high has been recorded.

Displacement

Tenellia adspersa would not be affected by displacement, indeed the species has formed colonies in distant locations by transport on ships.

Chemical Pressures

<table>
<thead>
<tr>
<th></th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic compound contamination</td>
<td>Insufficient information</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Heavy metal contamination</td>
<td>Insufficient information</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Hydrocarbon contamination</td>
<td>Insufficient information</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Radionuclide contamination</td>
<td>Insufficient information</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Changes in nutrient levels</td>
<td>Insufficient information</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>
Increase in salinity

The species can tolerate a wide range of salinities and will reproduce in salinities of 3 psu to 40 psu (Roginskaya, 1970).

Decrease in salinity

Changes in oxygenation

Insufficient information

Biological Pressures

Introduction of microbial pathogens/parasites

Insufficient information

Introduction of non-native species

Insufficient information

Extraction of this species

Insufficient information

Extraction of other species

Insufficient information

Additional information
Importance review

Policy/legislation

Wildlife & Countryside Act Schedule 5, section 9
UK Biodiversity Action Plan Priority ✔
Species of principal importance (England) ✔
Species of principal importance (Wales) ✔
Features of Conservation Importance (England & Wales) ✔

Status

National (GB) importance Nationally rare
Global red list (IUCN) category -

Non-native

Native -
Origin - Date Arrived -

Importance information

-none-
Bibliography

Datasets

Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.

