Ross (*Pentapora foliacea*)

MarLIN – Marine Life Information Network
Biology and Sensitivity Key Information Review

Angus Jackson

2016-06-08

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version https://www.marlin.ac.uk/species/detail/1389. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available [here](https://www.marlin.ac.uk). Based on a work at www.marlin.ac.uk
Summary

Description

A large, erect bryozoan deep orange in colour. The colony is attached to the substratum by an encrusting base and forms a mass of repeatedly dividing sheets in an open honeycomb structure. The edges of the sheets are wavy and convoluted. *Pentapora foliacea* has a growth rate of approximately 2 cm per year and lives for up to ten years. Colonies can reach up to 40 cm in diameter (more typically up to 20 cm across) and 10 cm in height. When dead, the deep orange colour fades to a pale buff.

Recorded distribution in Britain and Ireland

Common along the South coast of England as far east as Beachy Head. Also the south west, the western extremities of Wales and the Isle of Man. In Ireland present along the south west and north coasts. Scarce records from the Hebrides and St Kilda.

Global distribution
Pentapora foliacea is also recorded from the north coast of Morocco, but Mediterranean records require reassessment based on recent taxonomy (Lombardi et al., 2010).

Habitat

Pentapora foliacea colonies grow on bedrock or large boulders in current swept areas, often surrounded by gravel and scoured by coarse sand. They may colonize coarse gravel and pebbles but do not grow to large colonies.

Depth range

11 - 80

Identifying features

- Colonies erect, forming orange-buff clumps up to about 15 cm across.
- Young zooids elongate-hexagonal, with scattered pores in frontal wall.
- Frontal wall covered with heavy additional calcification, outline becoming rectangular or broadly hexagonal.

Additional information

Sometimes misleadingly called "ross coral". The Species Directory of the British Isles (Howson & Picton, 1997) placed Pentapora fascialis in the family Hippoporinidae under the species name Pentapora foliacea but Hayward & Ryland (1999) conflated the species and suggested that P. foliacea was a junior synonym of P. fascialis (Lombardi et al., 2010). Older classification schemes used the species Lepralia foliacea, e.g. the Plymouth Marine Fauna (Marine Biological Association 1957) and Bruce et al. (1963). But a recent study by Lombardi et al. (2010) concluded that Pentapora foliacea and Pentpora fascialis were distinct species and that P. foliacea was the resident species in the North East Atlantic while P. fascialis was included in the Mediterranean clade.

Due to the lack of information on these species and the taxonomic confusion in the literature, this review is based on information on both Pentapora foliacea and P. fascialis.

✔️ Listed by

[NIPS](https://www.marlin.ac.uk/habitats/detail/1389)

🔍 Further information sources

Search on:

[G](https://www.marlin.ac.uk/habitats/detail/1389) [G](https://www.marlin.ac.uk/habitats/detail/1389) [G](https://www.marlin.ac.uk/habitats/detail/1389) [NBN](https://www.marlin.ac.uk/habitats/detail/1389) [WoRMS](https://www.marlin.ac.uk/habitats/detail/1389)
Biology review

Taxonomy

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Bryozoa</th>
<th>Sea mats, horn wrack & lace corals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Gymnolaemata</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Cheilostomatida</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Bitectiporidae</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Pentapora</td>
<td></td>
</tr>
<tr>
<td>Authority</td>
<td>(Ellis & Solander, 1786)</td>
<td></td>
</tr>
<tr>
<td>Recent Synonyms</td>
<td>Pentapora fascialis (Pallas 1766)Lepralia foliacea (Ellis & Solander, 1786)</td>
<td></td>
</tr>
</tbody>
</table>

Biology

Typical abundance Moderate density
Male size range
Male size at maturity
Female size range Medium-large(21-50cm)
Female size at maturity
Growth form Foliose
Growth rate 2cm/year
Body flexibility None (less than 10 degrees)
Mobility

Characteristic feeding method Active suspension feeder, Non-feeding
Diet/food source
Typically feeds on
Sociability
Environmental position Epibenthic
Dependency No text entered.
Supports
Is the species harmful? No

Biology information

- Densities in the Bristol Channel have been recorded as up to one large colony per square metre. Populations in the Mediterranean have been recorded at densities of up to 7 colonies per square metre.
- *Pentapora fascialis* grows initially as an encrusting sheet, which seems able to regenerate erect growths (P.J. Hayward pers. comm.).
- Size ranges refer to colony diameter. Colony size is typically up to 20 cm in diameter and large specimens reach 40 cm across. The largest recorded specimen was from the Eddystone Light and had a circumference of over 2 metres and a depth of 30 cm (Hayward & Ryland, 1979). Specimens of *Pentapora fascialis* in the Mediterranean reach larger sizes (80cm diameter, 50 cm in height) in deeper waters (40-80 m).
- Colony shape has been described as 'depressed globular' or 'dome-like' with an elliptical
perimeter (Cocito et al., 1998(a)). Growth rates in the Bristol Channel have been estimated at around 2 cm (vertical height) per year through the use of stable oxygen isotope values (Patzold et al., 1987.). Another growth rate estimate (from the Mediterranean) indicates growth of over 200% colony surface area in 11 months (Cocito et al., 1998). Vertical growth has been recorded at up to 3.5 cm per year (Cocito & Ferdeghini, 1998 cited in Cocito et al., 1998).

- The calcified laminae are rather brittle.
- *Pentapora fascialis* characteristically supports several bryozoans including *Amphiblestrum flemingii*, *Callopora dumerilii*, *Membranipora nitida* & *Smittoidea reticulata* (Hayward & Ryland, 1979). Large colonies may shelter 1000's of other animals (Hayward & Ryland, 1979).

Habitat preferences

<table>
<thead>
<tr>
<th>Physiographic preferences</th>
<th>Offshore seabed, Open coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological zone preferences</td>
<td>Lower circalittoral, Lower infralittoral, Upper circalittoral</td>
</tr>
<tr>
<td>Substratum / habitat preferences</td>
<td>Artificial (man-made), Bedrock, Large to very large boulders</td>
</tr>
<tr>
<td>Tidal strength preferences</td>
<td>Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.)</td>
</tr>
<tr>
<td>Wave exposure preferences</td>
<td>Exposed, Moderately exposed, Sheltered, Very exposed</td>
</tr>
<tr>
<td>Salinity preferences</td>
<td>Full (30-40 psu)</td>
</tr>
<tr>
<td>Depth range</td>
<td>11 - 80</td>
</tr>
<tr>
<td>Other preferences</td>
<td>No text entered</td>
</tr>
<tr>
<td>Migration Pattern</td>
<td>Non-migratory / resident</td>
</tr>
</tbody>
</table>

Habitat Information

Off Lundy in the Bristol Channel, most common below 18 m and abundant between 25 -34 m (Hayward & Ryland, 1979). *Pentapora fascialis* is recorded as settling on artificial substrata in the Ligurian sea (Geraci, 1974 cited in Cocito et al., 1998(b)). *Pentapora foliacea* is recorded as being present (off the British Isles) in temperatures between 8 & 14 °C and salinity of 34.5 psu (Patzold et al., 1987).

Life history

Adult characteristics

<table>
<thead>
<tr>
<th>Reproductive type</th>
<th>No information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproductive frequency</td>
<td>Annual protracted</td>
</tr>
<tr>
<td>Fecundity (number of eggs)</td>
<td>No information</td>
</tr>
<tr>
<td>Generation time</td>
<td>Insufficient information</td>
</tr>
<tr>
<td>Age at maturity</td>
<td>See additional information</td>
</tr>
<tr>
<td>Season</td>
<td>February - October</td>
</tr>
<tr>
<td>Life span</td>
<td>5-10 years</td>
</tr>
</tbody>
</table>
Larval characteristics

- Larval/propagule type: Lecithotrophic
- Duration of larval stage: < 1 day
- Larval dispersal potential: No information
- Larval settlement period: Insufficient information

Life history information

Pentapora foliacea and *P. fascialis* are closely related. Therefore, information from *P. fascialis* has been used to infer life history characteristics of *P. foliacea* due to the lack of species-specific information and the confusion in taxonomy between the two species.

- *Pentapora foliacea* is perennial (Eggleston, 1972a) and probably lives for several years. Stable oxygen isotope values have shown colonies to be at least 3 years old (Patzold et al., 1987) and other estimates of growth rate suggest that *Pentapora fascialis* colonies in the Mediterranean are 10 years old or more (Cocito et al., 1998(a)).
- In *Pentapora fascialis*, the presence/absence of ovicells is taken to be a reliable indicator of reproductive status and as such is a feature of sexual maturity (Cocito et al., 1998(b)). In the Skomer Marine Nature Reserve, *Pentapora foliacea* colonies were reported to have ovicells present in September, indicating a reproduction event in September or late August (Lock et al., 2006). Colonies of *Pentapora fascialis* as small as 2.8 cm have been recorded as having ovicells. Reproductive ability is gained at an early stage of colony development (Cocito et al., 1998(b)). Larval settling time is inferred from another Cheilostomata bryozoan species, *Bugula neritina* (Keough & Chernoff, 1987). Gautier (1962) records ovicells being present all year round. Cocito et al. (1998(b)) note the presence of ovicells in *Pentapora fascialis* in the northwestern Mediterranean from February to October.
- Patzold et al. (1987) record the formation of a growth band in *Pentapora foliacea* during times of reduced reproductivity. This growth check line appears during periods of colder water temperatures.
Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

Physical Pressures

<table>
<thead>
<tr>
<th>Substratum Loss</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

Pentapora foliacea is permanently attached to the seabed so substratum loss would result in death. Although being quite long-lived (10+ years) *Pentapora fascialis* is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito *et al.*, 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito *et al* 1998(b)). Following the almost total loss of a small population, Cocito *et al.*, 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer and so is assessed as moderate.

Smothering

Pentapora foliacea is permanently attached to the seabed and so would be unable to avoid smothering. Although colonies of this species may reach considerable heights (50 cm in the Mediterranean), the sheet-like-structure is likely to retain any smothering sediment. Smaller colonies may be entirely killed whereas larger colonies that protrude through the smothering layer may lose only part of the colony. Smothering by encrusting epibiotic species may also occur (Cocoito *et al*. (1998(a)) recorded epibionts present on 50 % of the area of study quadrats in the Mediterranean). Epibionts can cause partial mortality of colonies. This effect is size dependent - proportions affected by epibionts is greater in larger colonies. Although being quite long-lived (10+ years) *Pentapora fascialis* is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito *et al.*, 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito *et al* 1998(b)). Following the almost total loss of a small population, Cocito *et al.*, 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer. Some evidence is available regarding the ability of this species to repair damage to colonies by epibiont smothering by regrowth of new zooids and strengthening of the base by thickening of lower zoid walls (Hayward and Ryland, 1979).

Increase in suspended sediment

<table>
<thead>
<tr>
<th></th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siltation</td>
<td>Intermediate</td>
<td>High</td>
<td>Low</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Siltation has been recorded as causing partial colony mortality in populations of *Pentapora*...
fascialis in the Mediterranean. Increases in siltation rate may cause loss of part of a population. Although being quite long-lived (10+ years) Pentapora fascialis is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following the almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer. Some evidence is available regarding the ability of this species to repair damage to colonies by siltation by regrowth of new zooids and strengthening of the base by thickening of lower zooid walls (Hayward and Ryland, 1979).

Decrease in suspended sediment

Dessication

<table>
<thead>
<tr>
<th>Decrease in suspended sediment</th>
<th>High</th>
<th>Moderate</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
</table>

The species is entirely subtidal and exposure to desiccating influences is likely to cause death. Although being quite long-lived (10+ years) Pentapora fascialis is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following the almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer and so is assessed as moderate.

Increase in emergence regime

<table>
<thead>
<tr>
<th>Increase in emergence regime</th>
<th>High</th>
<th>Moderate</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
</table>

The species is entirely subtidal and a period of emergence is likely to cause death. Although being quite long-lived (10+ years) Pentapora fascialis is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer.

Decrease in emergence regime

Increase in water flow rate

<table>
<thead>
<tr>
<th>Decrease in emergence regime</th>
<th>Low</th>
<th>Very high</th>
<th>Very Low</th>
<th>Low</th>
</tr>
</thead>
</table>

The species inhabits environments with considerable water flow and is often found in areas scoured by sand. Decreases in water flow rate may interfere with feeding efficiency. Recovery of condition on the resumption of normal conditions should not take too long.
Decrease in water flow rate

Increase in temperature

Pentapora foliacea is found in warmer waters as far south the north coast of Morocco. The northernmost limits of the distribution are in the Minch off western Scotland. Once established, colonies are most likely able to withstand occasional lower or higher than normal temperatures, but long term decreases in temperature may cause distribution range to shrink. Although being quite long-lived (10+ years) *Pentapora fascialis* is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following the almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer. Some evidence is available regarding the ability of this species to repair damage to the colony by regrowth of new zooids and strengthening of the base by thickening of lower zooid walls (Hayward and Ryland, 1979).

Decrease in temperature

Increase in turbidity

The species has very low or no ability for visual perception and is unlikely to be sensitive to changes in turbidity.

Decrease in turbidity

Increase in wave exposure

The species can occur in fairly exposed conditions. However, extreme wave action, as in storms, has been noted to cause widespread destruction of colonies (Cocito et al., 1998(a)). Therefore, increases in wave exposure may cause damage to colonies. Although being quite long-lived (10+ years) *Pentapora fascialis* is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following the almost total loss of a small population, Cocito et al. (1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer. Some evidence is available regarding the ability of this species to repair damage to the colony by regrowth of new zooids and strengthening of the base by thickening of lower zooid walls (Hayward and Ryland, 1979).

Decrease in wave exposure

Noise
It is unlikely that *Pentapora fascialis* has a particular intolerance to noise vibrations.

Visual Presence

<table>
<thead>
<tr>
<th>Tolerant</th>
<th>Not relevant</th>
<th>Not sensitive</th>
<th>High</th>
</tr>
</thead>
</table>

The species has very low or no ability for visual perception and is unlikely to be sensitive to changes in visual perception.

Abrasion & physical disturbance

<table>
<thead>
<tr>
<th>High</th>
<th>Moderate</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
</table>

The 'leaves' of a *Pentapora foliacea* colony are highly calcified and brittle. Physical abrasion can easily cause damage. *Pentapora foliacea* is noted as being tolerant of regular medium intensity disturbances (such as winter storms) but low frequency, high intensity disturbances such as freak storms cause mortality, particularly in shallower waters (Cocito *et al*., 1998(b)). The effects of diver frequentation have been monitored for *Pentapora fascialis* populations in the Mediterranean (Sala *et al*., 1996). Areas with heavy diving activity have greatly reduced densities of *Pentapora fascialis* and remaining colonies are frequently smaller and highly damaged. Colonies only survive in more protected locations such as under overhangs. In addition, *Pentapora foliacea* was reported to be damaged by scallop dredges and mobile fishing gear, pots and creels (Bullimore, 1985; DWT, 1993; Eno *et al*., 1996). Mobile gears also result in modification of the substratum, including removal of shell debris, cobbles and rocks, and the movement of boulders (Bullimore, 1985; Jennings & Kaiser, 1998). Therefore, intolerance has been assessed as high.

Although being quite long-lived (10+ years) *Pentapora fascialis* is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito *et al*., 1998b). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito *et al*., 1998b). Following almost total loss of a small population, Cocito *et al*., 1998b recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations then recovery may take much longer.

Displacement

<table>
<thead>
<tr>
<th>High</th>
<th>Moderate</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
</table>

The colonies of *Pentapora fascialis* are permanently attached to the substratum. If displaced, the colony in not able to reform the attachment and death occurs. No information is available regarding the reproduction or dispersal abilities of this species so no assessment of recoverability can be made. However, the species may be quite long lived (10+ years) and slow growing (2 cm per year). Following loss of a population, growth to original colony sizes, after recolonization, may take some years.

Chemical Pressures

<table>
<thead>
<tr>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not relevant</td>
</tr>
</tbody>
</table>

Synthetic compound contamination
Insufficient information

Heavy metal contamination
Not relevant

Insufficient information

Hydrocarbon contamination
Not relevant

Insufficient information

Radionuclide contamination
Not relevant

Insufficient information

Changes in nutrient levels
Not relevant

Increase in salinity
High, Moderate, Moderate, Moderate

The species only inhabits fully saline waters (Patzold et al., 1987) and exposure to salinity conditions outside of this range would probably result in death. Although being quite long-lived (10+ years) Pentapora fascialis is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following the almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no remaining nearby adult populations, as is likely with changes in salinity, then recovery may take much longer.

Decrease in salinity

Changes in oxygenation
Intermediate, High, Low, Low

There is no information regarding the tolerance of Pentapora fascialis to changes in oxygen concentration. However, Cole et al., (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2mg/l. Although being quite long-lived (10+ years) Pentapora fascialis is noted as having good reproductive and recolonization abilities, quite fast growth rates and gaining reproductive competency at an early stage (Cocito et al., 1998(b)). However, as the larval stage is potentially very short lived, dispersal distances may be limited (Keough & Chernoff, 1987). Local position of the adults can strongly affect the spatial pattern of larval settlement (Cocito et al., 1998(b)). Following almost total loss of a small population, Cocito et al., 1998(b)) recorded recovery and growth to original colony sizes taking only 3.5 years. In this case, reproductive adults remained nearby. If there are no
remaining nearby adult populations then recovery may take much longer. Some evidence is available regarding the ability of this species to repair damage to the colony by regrowth of new zooids and strengthening of the base by thickening of lower zooid walls (Hayward and Ryland, 1979).

Biological Pressures

<table>
<thead>
<tr>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>

Introduction of microbial pathogens/parasites

Insufficient information

Introduction of non-native species

Insufficient information

Extraction of this species

The species has no commercial value (Sala et al., 1996) and is highly unlikely to be extracted.

Extraction of other species

Pentapora fascialis has no known obligate relationships. Extraction of other species is not likely to have any effect on *Pentapora fascialis* colonies.

Additional information
Importance review

Policy/legislation

Northern Ireland Priority Species ✔

Status

National (GB) importance Not rare/scarce Global red list (IUCN) category -

Non-native

Native -
Origin - Date Arrived -

Importance information

On rocky, current swept seabeds, the species is often a conspicuous and dominant component of the assemblage (Hayward & Ryland, 1979). *Pentapora foliacea* is recorded as acting as host for a variety of other bryozoan species and shelter for quite high densities of other fauna (Hayward & Ryland, 1979)
Bibliography

Datasets

https://www.marlin.ac.uk/habitats/detail/1389