A brittlestar (*Amphiura chiajei*)

MarLIN – Marine Life Information Network
Biology and Sensitivity Key Information Review

Georgina Budd

2006-11-15

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

**Please note.** This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1657](https://www.marlin.ac.uk/species/detail/1657). All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk
(page left blank)
Summary

Description

A small brittle star with very long arms which lives buried in muddy sand. Disc may be up to 11 mm in diameter with upper and underside surfaces covered in small smooth scales. Each arm segment has between 4-6 short spines on each side, none flattened or widened at the tip and two large tentacle scales. Colour in life reddish or greyish-brown, often somewhat mottled.

Recorded distribution in Britain and Ireland

Recorded off the west, north and east coasts of the British Isles, mostly below 10 m in depth. There is some doubt over records from the south coast.

Global distribution

Distributed from western Norway (Trondhjemfjord), southwards along European coasts to the Mediterranean, the west coast of North Africa, and the Azores.

Habitat
Amphiura chiajei lives partially buried in mud and muddy sand.

Depth range
10 - > 100 m

Identifying features
- Small disc and long coiled arms, up to 8 times the diameter of the disc.
- Dorsal and ventral surfaces of disc covered with fine scales, those of the dorsal side diminishing gradually in size towards the edge of the disc.
- Primary plates of disc generally distinct.
- Two conspicuous tentacle scales.
- 4-6 conical arm spines.
- Lives buried in mud or fine sand.

Additional information
Other Amphiura species are similar. Mixed populations of Amphiura chiajei and Amphiura filiformis are common.

Listed by

Further information sources
Search on:

NBN WoRMS
### Biology review

#### Taxonomy

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Echinodermata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Ophiuroidea</td>
</tr>
<tr>
<td>Order</td>
<td>Brittlestars</td>
</tr>
<tr>
<td>Family</td>
<td>Ophiurida</td>
</tr>
<tr>
<td>Genus</td>
<td>Amphiura</td>
</tr>
<tr>
<td>Authority</td>
<td>Forbes, 1843</td>
</tr>
</tbody>
</table>

#### Biology

**Typical abundance**

- Male size range: disc diameter < 11mm
- Male size at maturity: 
- Female size range: Small-medium (3-10cm)
- Female size at maturity: 
- Growth form: Stellate
- Growth rate: 0.5 mm/year
- Body flexibility: High (greater than 45 degrees)
- Mobility: 

**Characteristic feeding method**: Surface deposit feeder

**Diet/food source**: Organic detritus.

**Sociability**

- Environmental position: Infaunal
- Dependency: No text entered.
- Supports: No information

**Is the species harmful?**

No

#### Biology information

**Feeding method**

*Amphiura chiajei* buries in the sediment with its disc at 4-6 cm depth. One or two arms are stretched up above the sediment to collect food at the surface. Food particles are then transported along the arms to its mouth and ingested (Buchanan, 1964).

**Population densities**

The species is mostly found in low numbers throughout its range, although a number of high density populations are reported. Survey work by Keegan & Mercer (1986) revealed *Amphiura chiajei* to be a dominant member of the bottom community in Killary Harbour (a fjord-like inlet on the west coast of Ireland). The highly dense population of about 700 individuals per m², occurred in sediments with a silt/clay content of 80-90% and organic carbon levels of 5-7%. In contrast, Buchanan (1964) reported the mean population density of *Amphiura chiajei* to be 13 individuals per m² off the Northumbrian coast.
Interactions with other species
The heart urchin, *Brissopsis lyrifera*, which typically co-occurs with *Amphiura chiajei*, can negatively affect the growth of body and gonads of *Amphiura chiajei*, whilst *Amphiura chiajei* seemingly has no effect on the growth of *Brissopsis lyrifera*. Hollertz et al. (1998) suggested that this was attributable to the extensive bioturbation of the sediment caused by *Brissopsis lyrifera*.

Habitat preferences
- Physiographic preferences: Open coast, Offshore seabed, Sea loch / Sea lough, Enclosed coast / Embayment
- Biological zone preferences: Bathybenthic (Bathyal), Circalittoral offshore, Lower circalittoral, Upper circalittoral
- Substratum / habitat preferences: Mud, Muddy sand
- Tidal strength preferences: Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
- Wave exposure preferences: Extremely sheltered, Sheltered, Very sheltered
- Salinity preferences: Full (30-40 psu), Variable (18-40 psu)
- Depth range: 10 - > 100 m
- Other preferences: No text entered
- Migration Pattern: Non-migratory / resident

Life history
- Adult characteristics
  - Reproductive type: Gonochoristic (dioecious)
  - Reproductive frequency: Annual episodic
  - Fecundity (number of eggs): No information
  - Generation time: See additional information
  - Age at maturity: 4 years
  - Season: Summer - Autumn
  - Life span: 5-10 years

  Larval characteristics
  - Larval/propagule type: -
  - Larval/juvenile development: Planktotrophic
  - Duration of larval stage: See additional information
  - Larval dispersal potential: See additional information
  - Larval settlement period: Insufficient information
Lifespan
Munday (1992) suggested from his observations in Killary Harbour, Ireland that individuals of *Amphiura chiajei* attained an age of 10 years, an estimate that was consistent with that reported for populations of *Amphiura chiajei* living off the Northumbrian coast (Buchanan, 1964).

Reproduction
In most species of ophiuroids the sexes are separate and fertilization external, leading to the development of a pelagic larva, the ophiopluteus (Fish & Fish, 1996). Individuals reach reproductive maturity after four years and in *Amphiura chiajei* there is a seasonal cycle in gonad development. A period of rest occurs at the end of autumn followed by growth overwinter. Gonads reach maturity towards the end of spring and summer. Spawning occurs over the period from the end of summer until the middle of autumn (Fenaux, 1970).

Larval settling time and recruitment
In the laboratory, Fenaux (1970) observed a complete larval metamorphosis through to the formation of a young ophiuroid within 8 days at temperature 18-20 °C. Fenaux (1970) suggested that for eggs laid at the end of summer and at the beginning of autumn in which the water temperature exceeds 20°C, the pelagic life is probably shorter. With such a short life in the plankton the dispersal potential is likely to be rather limited in comparison to other echinoderms. *Amphiura chiajei* is a species with sporadic recruitment, which, in combination with its slow growth rate, later maturity and longevity make it a striking contrast to *Amphiura filiformis* (see Buchanan, 1964).

Cohort dominance
A heavy and successful settlement of *Amphiura chiajei* can dominate an area for over 10 years. Buchanan (1964), sampled *Amphiura chiajei* off the Northumbrian coast between 1958 and 1965, and found the entire population to consist of large individuals (disc diameter > 7.5 mm). Between 1958 and 1964, there was no evidence of any new recruitment to the population, but at the end of 1965 a heavy and successful recruitment occurred. Prior to this settlement it was apparent that the same single ageing population had been measured for over 8 years. Spawning had occurred but without successful recruitment. This pattern of longevity and of episodic recruitment is consistent with that if the population of *Amphiura chiajei* in Killary Harbour, west coast of Ireland (Munday & Keegan, 1992). The mortality rate was measured between 1961-1963 and shown to be small.
Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

<table>
<thead>
<tr>
<th>Physical Pressure</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substratum Loss</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

*Amphiura chiajei* is an infaunal species that lives partially buried in sediment with its disc at a depth of 6 cm. It is not sufficiently mobile to avoid substratum removal. Thus removal of the substratum would also remove the resident population of *Amphiura chiajei* and intolerance has been assessed to be high.

In the absence of a resident population, recovery is likely to be achieved through a heavy settlement of juveniles from the plankton which is likely to be more successful in the absence of competition from established adults (Künitzer, 1989; O'Connor et al., 1983), see additional information below.

<table>
<thead>
<tr>
<th>Smothering</th>
<th>Low</th>
<th>Immediate</th>
<th>Not sensitive</th>
<th>Low</th>
</tr>
</thead>
</table>

*Amphiura chiajei* lives partially buried in sediment with its disc at a depth of 6 cm. As a brittlestar adapted for burrowing it is probably tolerant of additional sediment at the benchmark level and intolerance has been assessed to be low. However smothering by impermeable or viscous materials would probably have an adverse effect upon the brittlestar and intolerance reported to be higher.

| Increase in suspended sediment | Tolerant* | Not relevant | Not sensitive* | High       |

*Amphiura chiajei* is a non-selective surface deposit feeder and does not therefore rely on suspended food. However, for most benthic deposit feeders, food is suggested to be a limiting factor for body and gonad growth, at least between events of sedimentation of fresh organic matter (Hargrave, 1980; Tenore, 1988). Consequently, an increase in the suspended matter settling out from the water column to the substratum will be utilisable by *Amphiura chiajei* as a food resource. This suggests that an increase in siltation may be beneficial to the population and the species has been considered to be tolerant*.

| Decrease in suspended sediment | Low      | Very high | Very Low     | Moderate   |

*Amphiura chiajei* is a non-selective surface deposit feeder and therefore does not rely on suspended food. However, for most benthic deposit feeders, food is suggested to be a limiting factor for body and gonad growth, at least between events of sedimentation of fresh organic matter (Hargrave, 1980; Tenore, 1988). *Amphiura chiajei* is likely to be intolerant of a decrease in siltation as a reduced food supply will increase competition and depress growth. Recovery is likely to be rapid once food availability increases.

| Dessication       | Intermediate | High      | Low        | Moderate   |

Populations of *Amphiura chiajei* occur subtidally and are not likely to be affected by desiccation. However, *Amphiura chiajei* is likely to be intolerant of continuous exposure to air and sunshine for one hour e.g. on the deck of a ship as by-catch. As a mobile, infaunal burrower and crawler it is likely to make efforts to avoid the factor by seeking shade, but the viability of individuals is likely to be affected and some may dry up and die, therefore intolerance has been
assessed to be intermediate. Recoverability has been assessed to be high as a proportion of the breeding population is likely to remain.

**Increase in emergence regime**

| Not relevant | Not relevant | Not relevant | **Low** |

Emergence is very unlikely to occur in the circalittoral and an assessment of an increase in the emergence regime is not considered relevant for *Amphiura chiajei*.

**Decrease in emergence regime**

| Not relevant | Not relevant | Not relevant | **Low** |

Emergence is very unlikely to occur in the circalittoral and an assessment of a decrease in the emergence regime is not considered relevant for *Amphiura chiajei*.

**Increase in water flow rate**

| **High** | Moderate | Moderate | Moderate |

Unlike *Amphiura filiformis*, *Amphiura chiajei* shows no clear response to directional bottom currents or an increase in water current rate (Buchanan, 1964). In laboratory conditions, *Amphiura chiajei* maintained a position within the sediment with its arms stretched out across the sediment until 30 cm/s (0.6 knots), when the arms streamed out in the direction of the water current (Buchanan, 1964). If the water current were to increase to moderately strong (1-3 knots), individuals would be unlikely to maintain this position and possibly retract their arms into the burrow, if not loose them. This would prevent the animal from feeding. A long term increase in water flow rate is also likely to change the nature of the sediment removing finer particles. High density aggregations of *Amphiura chiajei* seem to be characteristic of sediments with a silt/clay content of 80-90% and organic carbon levels of 5-7% (Keegan & Mercer, 1986), so removal of particular matter is likely to reduce abundance and over a year many individuals may die, so intolerance has been assessed to be high. With a reduced population, recovery is likely to be achieved through migration and a heavy settlement of juveniles from the plankton, which is likely to be more successful in the absence of competition from established adults (Künitzer, 1989; O’Connor et al., 1983). However, as recruitment tends to be sporadic recovery has been assessed to be moderate.

**Decrease in water flow rate**

| Tolerant | Not relevant | Not sensitive | **Low** |

*Amphiura chiajei* is characteristic of offshore and shallower, stable muddy habitats exposed to only weak or very weak currents. Sediments may become muddier due to increased settlement of silt if current strength declines. However, at the level of the benchmark it is not expected that populations will be affected and *Amphiura chiajei* has been assessed to tolerate a decrease in water flow rate.

**Increase in temperature**

| Low | Moderate | Low | **High** |

The species is distributed in waters to the south of the British Isles and so is probably able to tolerate a long term change in temperature of 2 °C. Increases in temperature may enhance growth and fecundity. Muus (1981) showed that juvenile *Amphiura filiformis* are capable of much higher growth rates in experiments with temperatures between 12 and 17 °C (unlimited food supply). Juvenile disc diameter increased from 0.5 to 3.0 mm in 28 weeks under these conditions compared to over two years in the North Sea. Mean summer temperatures of 14 °C and an apparent abundant food supply may also account for the early rapid growth of *Amphiura chiajei* in Killary Harbour (Munday & Keegan, 1992). As the species appears to be killed only by extreme increases in temperature, intolerance has been assessed to be low.

**Decrease in temperature**

| Intermediate | Moderate | Moderate | **High** |

The species is distributed in waters to the north of the British Isles and so is probably able to tolerate a long term change in temperature of 2 °C.
Populations of *Amphiura chiajei* seem periodically affected by winter cold. Mean densities of *Amphiura chiajei* in Killary Harbour, west coast of Ireland, decreased following months with the lowest recorded bottom temperatures, 4 °C and 6 °C, for February 1986 and January 1987 respectively. Intolerance of the acute change and depressed temperatures on the part of some of the older individuals probably led to their demise (Munday & Keegan, 1992). Low temperatures are also a limiting factor for breeding which occurs in the warmest months in the British Isles. Intolerance has been assessed to be intermediate. Recolonization is likely but assessed to be moderate, see additional information below.

**Increase in turbidity**

*Amphiura chiajei* may be able to perceive changes in irradiance but is probably tolerant of increased turbidity.

**Decrease in turbidity**

*Amphiura chiajei* may be able to perceive changes in irradiance but is probably tolerant of changes to a decrease in turbidity.

**Increase in wave exposure**

*Amphiura chiajei* is found offshore and in sheltered coastal habitats characterised by fine muddy sediments and low/negligible wave exposure. Populations of *Amphiura chiajei* occurring offshore at depths greater than 60 m are not subject to exposure from wave action, as the effects are attenuated with depth. However, for populations occurring at depths less than 60 m and nearer the coast, wave action resulting from storms may cause disturbance to the sediment surface and may periodically displace specimens form the sediment (McIntosh, 1875). *Amphiura chiajei* is a burrower and may withdrawal its arms inside the burrow for additional protection, but because wave action may cause displacement and stranding, it is likely to cause some mortality in shallower locations at the benchmark level and intolerance has been assessed to be intermediate.

**Decrease in wave exposure**

*Amphiura chiajei* is found offshore and in shallower, sheltered nearshore habitats characterised by fine muddy sediments and low/negligible wave exposure. Thus an assessment for a decrease in wave exposure was not considered relevant.

**Noise**

No information concerning sound or vibration reception in echinoids was found.

**Visual Presence**

Brittlestars exhibit a wide range of responses to light intensity, from a largely indifferent behaviour to pronounced colour changes and rapid escape behaviour. Aizenberg *et al.* (2001) reported that certain calcite crystals used by brittlestars for skeletal construction are also a component of a specialised photosensory organ. However, these structures are absent in light indifferent species. Thus *Amphiura chiajei* may have visual perception but is likely to have poor visual acuity and consequently probably not sensitive to visual disturbance at the benchmark level.

**Abrasion & physical disturbance**

Brittlestars have fragile arms which are likely to be damaged by abrasion or physical disturbance. *Amphiura chiajei* burrows in the sediment and extends its arms across the sediment surface to feed. Ramsay *et al.* (1998) suggested that *Amphiura* species may be less susceptible to beam trawl damage than other species of echinoid or tube dwelling amphipods.
and polychaetes. For example, Bergman & Hup (1992) found that beam trawling in the North Sea had no significant direct effect on small brittlestars. Brittlestars can tolerate considerable damage to arms and even the disc without suffering mortality and are capable of disc and arm regeneration. Intolerance to physical disturbance has been assessed to be low. Individuals can still function whilst an arm is regenerating so recovery would probably be rapid.

Displacement

<table>
<thead>
<tr>
<th>Level</th>
<th>Intolerance</th>
<th>Recoveryability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Not sensitive</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although not highly active, *Amphiura chiajei* is a crawling, burrowing, infaunal species. Following displacement and return to suitable sediments burrowing amphiuroids start almost immediately to dig downwards (Buchanan, 1964). *Amphiura chiajei* would be exposed to predators for a short time but as fish only tend to take their legs, intolerance has been assessed to be low.

### Chemical Pressures

#### Synthetic compound contamination

Echinoderms tend to very sensitive to various types of marine pollution (Newton & McKenzie, 1995). However, there is insufficient information on the direct intolerance of *Amphiura chiajei* to synthetic chemicals, although it is known to bioaccumulate PCBs (Gunnardsson & Skold, 1999). Loizeau & Menesguen (1993) showed that 8-15% of the PCB burden in dab, *Limanda limanda*, from the Bay of Seine could be explained by ophiuroid consumption. Thus *Amphiura* communities may play an important role in the accumulation, remobilization and transfer of PCBs and other sediment associated contamination to higher trophic levels. Walsh *et al.* (1986) examined the influence of chronic exposure to tributyltin (TBT) and triphenyltin oxide on arm regeneration in another brittlestar, *Ophioderma brevispina*, and found some evidence of inhibition at 10 ng/l and significant inhibition at 100 ng/l. It is suggested that TBT acts via the nervous system, although direct action on the tissues at the point of breakage could not be excluded.

#### Heavy metal contamination

Information concerning the effects of heavy metals on echinoderms is limited and no details specific to *Amphiura chiajei* were found. However, adult echinoderms, such as *Ophiothrix fragilis* are known to be efficient concentrators of heavy metals including those that are biologically active and toxic (Hutchins *et al.*, 1996). However, there is no information available regarding the effects of this bioaccumulation.

#### Hydrocarbon contamination

Newton & McKenzie (1998) studied the effects of oil-based drill cuttings on burrowing brittlestars, *Amphiura chiajei* and *Amphiura filiformis* and observed responses at both acute and chronic levels. Acute toxicity tests showed that drill cuttings containing oil based muddy drill cuttings had a very low toxicity (LC$_{50}$ = 52,8000 ppm total hydrocarbons in test sediment). A decrease in brittlestar burrowing activity was also recorded at 4,800 and 1,200 ppm total hydrocarbons in sediment. However, Newton & McKenzie (1993) suggested that these were a poor predictor of chronic response. Chronic sub-lethal effects were detected around the Beryl oil platform in the North Sea where the hydrocarbon content of the sediment was very low (<3 ppm total hydrocarbons in sediment), and *Amphiura chiajei* was excluded from areas nearer the platform with higher sediment hydrocarbon content (> 10 ppm). However, the authors did suggest that deleterious effects may also be related to the non-hydrocarbon element of the cuttings such as metals, physical disturbance or organic enrichment.
Amphiura chiajei is also host to symbiotic sub-cuticular bacteria (Kelly & McKenzie, 1995). After exposure to hydrocarbons, loadings of such bacteria were reduced indicating a possible sub-lethal stress to the host (Newton & McKenzie, 1995). Intolerance of Amphiura chiajei to hydrocarbon contamination has been assessed to be high, owing to field evidence for exclusion, death and migration by adults and poor colonization by juveniles. Recovery to a pre-impact population structure is likely to take longer than five years (see additional information below) and so recovery has been assessed to be moderate.

### Radionuclide contamination

There is insufficient information concerning the intolerance of Amphiura chiajei to radionuclides, although adult echinoderms, such as Ophiothrix fragilis are known to be efficient concentrators of radionuclides (Hutchins et al., 1996). No information concerning the effects of such bioaccumulation was found.

### Changes in nutrient levels

Nilsson (1999) reported a positive response by Amphiura chiajei to increased organic enrichment (27 and 55 g C mètre², applied four times over eight weeks) demonstrable by an increase in arm tip regeneration rate. In the Skagerrak in the North Sea, Josefson (1990) reported a massive increase in abundance and biomass of Amphiura species between 1972 and 1988 attributable to organic enrichment. Sköld & Gunnarsson (1996) reported enhanced growth and gonad development in response to short-term enrichment of sediment cores containing Amphiura chiajei maintained in laboratory mesocosms. Thus increased nutrient availability promoting phytoplankton productivity and an increase in the organic matter reaching the sea bed is likely to be beneficial to Amphiura chiajei. For benthic deposit feeders, food is suggested to be a limiting factor for body and gonad growth, at least between events of sedimentation of fresh organic matter (Hargrave, 1980; Tenore, 1988). Nilsson (1999) also found that Amphiura chiajei was able to utilise an increased input of organic matter for growth in conjunction with moderate hypoxia. Therefore, it appears that Amphiura chiajei is tolerant of an increase in nutrient levels and may indirectly benefit. At the benchmark level Amphiura chiajei has been considered to be tolerant.

### Increase in salinity

Echinoderms are stenohaline owing to the lack of an excretory organ and a poor ability to osmo- and ion-regulate (Stickle & Diehl, 1987). The preferred habitat of Amphiura chiajei is found offshore in waters of full salinity where an increase of salinity is not likely to occur.

### Decrease in salinity

Echinoderms are stenohaline owing to the lack of an excretory organ and a poor ability to osmo- and ion-regulate (Stickle & Diehl, 1987). Pagett (1979) examined the tolerance of Amphiura chiajei to brackish water (0.5-30 psu) in specimens taken from Loch Etive, Scotland. Loch Etive is a sealoch subject to periods of reduced salinities owing to heavy rain and freshwater runoff. Pagett (1979) found that specimens nearer freshwater influxes were more tolerant of reduced salinities than those nearer the open sea. Amphiura chiajei taken from an area of 24 psu had an LD₅₀ of > 21 days for a 70% dilution (17 psu) and an LD₅₀ of 8.5 days for a 50% dilution (12 psu). In comparison, specimens taken from an area with salinity 28.9 psu, had an LD₅₀ of > 12.5 days for a 70% dilution (20 psu) and an LD₅₀ of 6 days for a 50% dilution (14 psu). As Amphiura chiajei is mobile and burrows it may be able to avoid changes in salinity outside its preference, e.g. burrowing may help Amphiura chiajei to withstand depressed salinities owing to the 'buffering' effect of the substratum. However, as some mortalities were recorded for decreases in salinity over a time period less than the benchmark level, it is likely...
that *Amphiura chiajei* would be highly intolerant of a decrease of one category from the MNCR salinity scale for one year.

With a reduced population, recovery is likely to be achieved through migration and a heavy settlement of juveniles from the plankton, which is likely to be more successful in the absence of competition from established adults (Künitzer, 1989; O'Connor et al., 1983). However, as recruitment tends to be sporadic recoverability has been assessed to be moderate.

### Changes in oxygenation


<table>
<thead>
<tr>
<th>Changes in oxygenation</th>
<th>Low</th>
<th>Very high</th>
<th>Very Low</th>
<th>High</th>
</tr>
</thead>
</table>

In experiments exposing benthic invertebrates to decreasing oxygen levels *Amphiura chiajei* only left its protected position in the sediment when oxygen levels fell below 0.54 mg O$_2$ L$^{-1}$ (Rosenberg et al., 1991). This escape response increases its risk to predators. Mass mortality in a superficially similar species of ophiuroid, *Amphiura filiformis* from the south-east Kattegat has been observed during severe hypoxic events (< 0.7 mg/l), while the abundance of *Amphiura chiajei* remained unchanged at the same site and time (Rosenberg & Loo, 1988).

In laboratory conditions, Nilsson (1999) maintained specimens of *Amphiura chiajei* in hypoxic conditions (1.8-2.2 mg O$_2$ L$^{-1}$ for eight weeks and recorded no deaths or witnessed specimens escaping to the surface. Rosenberg et al. (1991) suggested that *Amphiura chiajei* had a higher tolerance to hypoxia than *Amphiura filiformis* owing to a respiration rate five times lower (0.011 ml O$_2$ per g wet /wt h$^{-1}$ compared to 0.058 ml O$_2$ per g wet /wt h$^{-1}$ respectively, at 6°C). This evidence suggests the intolerance of *Amphiura chiajei* to the benchmark level of 2 mg/l for one week to be low.

### Biological Pressures

<table>
<thead>
<tr>
<th>Introduction of microbial pathogens/parasites</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

No information concerning infestation or disease related mortalities was found.

<table>
<thead>
<tr>
<th>Introduction of non-native species</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

No non-native species are known to compete with *Amphiura chiajei*.

<table>
<thead>
<tr>
<th>Extraction of this species</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

It is extremely unlikely that this species would be subject to extraction as it has no commercial value, although dredging / fishing operations may affect populations in some habitats.

<table>
<thead>
<tr>
<th>Extraction of other species</th>
<th>Intolerance</th>
<th>Recoverability</th>
<th>Sensitivity</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

*Amphiura chiajei* has no known obligate relationships so is not directly intolerant of the removal of another species. However, it may constitute a component of demersal fishing trawl by-catch. Whilst some individuals may die, many more may suffer physical injury. Munday (1993) observed that 99% of *Amphiura chiajei* showed evidence of arm tip regeneration in the population off Killary Harbour. Whilst benthic trawling may contribute to arm damage, sub-lethal levels of predation appeared to be the main causative factor for regeneration and was a persistent experience. It is likely that *Amphiura chiajei* would be resistant to damage caused by the extraction of other species and intolerance has been assessed to be low. Recoverability has been considered to be high owing to the regenerative capability of established adults.

### Additional information
Recoverability

*Amphiura chiajei* is a long lived (> 10 years), slow growing species. As a result an area may become dominated over many years by adults representative of one larval settlement (Munday & Keegan, 1992; Buchanan, 1964). The species has an annual reproductive cycle and is likely to be quite fecund owing to its planktonic development, but juvenile recruitment tends to be very sporadic. In the laboratory, Fenaux (1970) observed completion of larval development within eight days at 18°C. It is not clear whether this is representative of field conditions, but such a short planktonic existence would limit the species powers of dispersal. In addition, the local current regimes of its preferred habitat, e.g. fjordic embayments, would also serve to locally confine planktonic larvae (Pearson, 1970). In long-lived, dense, adult-dominated populations in apparently very stable areas, Künitzer (1989) suggested that the survival of recruits was low owing to competition with established adults, which, as a non-selective surface deposit feeders, may take their own juveniles as a food item at the earliest settlement stage (0.33 mm disc diameter). In contrast, in areas which experience periodic instability, such as the Bay of Concarneau, France, populations of *Amphiura* species are prevented from reaching carrying capacity owing to periodic reduction of the population density (Bourgoin & Goillou, 1988). Likewise, Munday & Keegan (1992) only recorded a successful recruitment of juveniles following the significant demise of adults after depressed winter temperatures in Killary Harbour, Ireland. Therefore, it appears that after removal of all or most of the population by a factor, recovery is possible through larval settlement. However, owing to evidence of a short planktonic existence and the fact that a new settlement will take 4-5 years to reach maturity, recoverability of *Amphiura chiajei* has been assessed to be moderate.
### Importance review

#### Policy/legislation

- no data -

#### Status

<table>
<thead>
<tr>
<th>National (GB)</th>
<th>Global red list (IUCN) category</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Non-native

<table>
<thead>
<tr>
<th>Native</th>
<th>Origin</th>
<th>Date Arrived</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Importance information

- none -
Bibliography


Pearson, T.H., 1970. The benthic ecology of Loch Linnhe and Loch Eil, a sea loch system on the west coast of Scotland. 1: The


Datasets


South East Wales Biodiversity Records Centre, 2018. SEWBReC Marine and other Aquatic Invertebrates (South East Wales). Occurrence dataset:https://doi.org/10.15468/zxy1n6 accessed via GBIF.org on 2018-10-02.