BIOTIC Species Information for Asterias rubens
Researched byGeorgina Budd Data supplied byMarLIN
Refereed byProf. David Nichols
General Biology
Growth formRadial
Feeding methodScavenger
Environmental positionEpibenthic
Typical food typesBivalves, polychaetes, small crustaceans, other echinoderms and carrion. HabitFree living
BioturbatorNot relevant FlexibilityHigh (>45 degrees)
FragilityIntermediate SizeMedium-large(21-50cm)
HeightInsufficient information Growth Rate0.2-1 cm/month
Adult dispersal potential1km-10km DependencyIndependent
General Biology Additional InformationGrowth rate
There is considerable irregularity in the growth rate of starfish, especially during their first year.
  1. Vevers (1949) observed that with an abundant food supply, juvenile specimens of Asterias rubens could increase their radius at a monthly rate of slightly more than 10 mm in summer and autumn, and slightly less than 5 mm per month in winter.
  2. Orton & Frazer (1930) recorded an increase in diameter of 2.5 mm per month on average, and 5.0 mm per month maximum in Asterias rubens.
  3. Nichols & Barker (1984 b) followed the growth of annual cohorts in a population of Asterias rubens on an intertidal reef in Torbay, South Devon, UK, for three years. Growth was most rapid in the year following settlement and during the warmer months of the year. The average increase in starfish diameter over the first year was 28.5 mm, and over the second, 13.0 mm. The mean monthly increase in diameter over the three year period of the study was 2.2 mm. Starfish on the reef became sexually mature in their second year after attaining a diameter of 5 cm.
Under conditions of poor food supply the growth of Asterias rubens is limited and specimens may decline in size (Hancock, 1958). Vevers (1949) reported a specimen of Asterias rubens shrinking in radius from 6 cm to 3.8 cm after starvation for 5 months.
Thus the plasticity of the growth rate of Asterias rubens causes difficulties when studying the population dynamics of this species, especially as individuals cannot be aged by inspection of growth rings in any skeletal component of the body (Barker & Nichols, 1983).

Asterias rubens preys upon a wide range of living organisms and carrion that include molluscs, polychaete worms and other echinoderms. Occasionally, small crustaceans are caught on the suction discs of the tube feet. Asterias rubens preys upon bivalve molluscs by forcing the bivalve's shell open with its tube-feet, the tips of which attach to the bivalve shell by suction. Once a tiny gap (<0.1 mm) is established between the valves of the prey species shell, the starfish everts its stomach lobes into the bivalve and commences digestion.

Detailed experimental studies (Castilla & Crisp, 1970, 1973; Castilla,1972) have established that Asterias rubens has a well developed olfactory sense with adaptive preferences and avoidances. Asterias rubens demonstrates positive rheotaxis (purposeful movement of a motile organism in to a water current), which is enhanced in the presence of living prey such as Mytilus edulis (Castilla, 1972 ) and reversed in the presence of a predator Crossaster papposus (Castilla, 1972b).

Other species of the benthic fauna, including prey species Marthasterias glacialis, Buccinum undatumand several species of ophiuroids, demonstrate avoidance reactions in the presence of the predatory starfish Asterias rubens (Feder & Arvidssen 1967; Russell, 1984). These species can detect Asterias rubens owing to the release of a surface-active saponin from its body surface (Mackie et al. 1968).

Biology References Fish & Fish, 1996, Sloan, 1980, Barker & Nichols, 1983, Mackie et al., 1968, Russell, 1984, Feder & Arvidsson, 1967, Vevers, 1949, Nichols & Barker, 1984 (b), Nichols & Barker, 1984, Hancock, 1958, Orton & Fraser, 1930, Castilla & Crisp, 1973, Castilla & Crisp, 1970, Castilla, 1972,
About MarLIN | Contact, Enquiries & Feedback | Terms & Conditions | Funding | Glossary | Accessibility | Privacy | Sponsorship

Creative Commons License BIOTIC (Biological Traits Information Catalogue) by MarLIN (Marine Life Information Network) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Permissions beyond the scope of this license are available at Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Based on a work at