BIOTIC Species Information for Amphiura filiformis
Click here to view the MarLIN Key Information Review for Amphiura filiformis
Researched byLizzie Tyler Data supplied byUniversity of Sheffield
Refereed byThis information is not refereed.
Reproduction/Life History
Reproductive typeGonochoristic
Developmental mechanismPlanktotrophic
Reproductive SeasonSummer Reproductive LocationAs adult
Reproductive frequencyAnnual protracted Regeneration potential No
Life span11-20 years Age at reproductive maturity3-5 years
Generation timeInsufficient information Fecundity50000
Egg/propagule size Fertilization typeExternal
Larvae/Juveniles
Larval/Juvenile dispersal potential>10km Larval settlement periodSee additional information
Duration of larval stage1-6 months   
Reproduction Preferences Additional Information
  • Life span
    Muus (1981) estimates the life span of the species to be 25 years based on oral width (which does not change with gonadial growth) to determine the stability of population structure, with recruitment taking place at the 0.3mm size levels. In very long term studies of Amphiura filiformis populations in Galway Bay O'Connor et al. (1983) indicate a life span of some 20 years is possible. Sköld et al. (1994) also estimated a similar life span for the species in the Skagerrak, west Sweden. However, early suggestions for the life span of Amphiura filiformis had been estimated at between 2 and 6 years (Buchanan, 1964; O'Conner & McGrath, 1980; Ocklemann & Muus, 1978). These early estimates of the life span of ophiuroids were based on several factors which have been found to give a possible margin for error (Muus, 1981). Firstly, disc diameter had traditionally been used as the basis for population structure determination. However, this introduces a margin of error because gonadial growth causes disc diameter to increase during the breeding season and decrease after spawning. Secondly, most estimates were based on recruitment of individuals at a disc size of around 1mm so that sieving on a 1mm mesh did not retain the earliest settlers which were smaller.
  • Fecundity
    A total of 50,000 oocytes per ripe female is reported by O'Connor (pers. comm. in Duineveld et al., 1987).
  • Gametes
    Time of first and last gametes recorded is from Galway Bay, Ireland (Bowmer, 1982). A discrete, relatively short annual breeding period (Jun-Sep) was observed with peak activity in August. In the same area O'Conner & McGrath (1980) observed that all large animals spawned during August/September in two consecutive years. Buchanan (1964) reported that Amphiura filiformis breeds in July in Britain. In the Ligurian Sea in the Mediterranean the spawning period is much longer, lasting from March to November (Pedrotti, 1993).
  • Recruitment
    Descriptions of the life history of Amphiura filiformis vary greatly in the literature. In most of these studies, the basis for determining the size of recruits, and therefore periods of recruitment, growth rates and lifespan, has been the mesh size used during sampling operations. The most commonly used mesh size, 1mm, has therefore not sampled the earliest settlers. For example, in a study of Amphiura filiformis populations in Galway Bay over a period of 2 years O'Conner & McGrath (1980) were not able to identify discrete periods of recruitment. However, other studies suggest autumn recruitment (Buchanan, 1964) and spring and autumn (Glémarec, 1979). Using a 265µm mesh size Muus (1981) identified a peak settlement period in the autumn with a maximum of 6800 recruits per m². Sköld et al. (2001) reported settling densities of 7,100 - 7,400 per m² in October in the Gullmarsfjord. Muus (1981) shows the mortality of these settlers to be extremely high with less than 5% contributing to the adult population in any given year. In Galway Bay populations, small individuals make up ca. 5% of the population in any given month, which also suggests the actual level of input into the adult population is extremely low (O'Connor et al., 1983).
  • Dispersal potential
    After cold winter related mass mortality of Amphiura filiformis in the German Bight, Gerdes (1977) calculated that dispersal to a location 10km away was within the reach of the larvae. However, dispersal is largely determined by water movements and currents. The species is thought to have a long pelagic life. Sköld et al. (1994) estimated the time lag between full gonads and settlement to be 88 days. This duration is comparable to the time period when pelagic larvae have been recorded in the plankton from July to November in one study and August to December in another (Sköld et al., 1994).
Reproduction References O'Connor & McGrath, 1980, Bowmer, 1982, Pedrotti, 1993, Muus, 1981, Gerdes, 1977, Glémarec, 1979, O'Connor et al., 1983, Ockelmann & Muus, 1978, Buchanan, 1964, Sköld, 1994, Duineveld et al., 1987, Sköld et al., 2001, Eckert, 2003, Julie Bremner, unpub data,
About MarLIN | Contact, Enquiries & Feedback | Terms & Conditions | Funding | Glossary | Accessibility | Privacy | Sponsorship

Creative Commons License BIOTIC (Biological Traits Information Catalogue) by MarLIN (Marine Life Information Network) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Permissions beyond the scope of this license are available at http://www.marlin.ac.uk/termsandconditions.php. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Based on a work at www.marlin.ac.uk.