BIOTIC Species Information for Venerupis senegalensis
Click here to view the MarLIN Key Information Review for Venerupis senegalensis
Researched byWill Rayment Data supplied byMarLIN
Refereed byThis information is not refereed.
General Biology
Growth formBivalved
Feeding methodActive suspension feeder
Mobility/MovementBurrower
Environmental positionInfaunal
Typical food typesSuspended organic matter, particularly unicellular algae HabitBurrow dwelling
Bioturbator FlexibilityNone (< 10 degrees)
FragilityIntermediate SizeSmall-medium(3-10cm)
HeightInsufficient information Growth Rate1.3 mm/month
Adult dispersal potential100-1000m DependencyIndependent
SociabilitySolitary
Toxic/Poisonous?No
General Biology Additional InformationAbundance
Johanessen (1973a) recorded Venerupis senegalensis (studied as Venerupis pullastra) from a sheltered beach in Norway at a mean density of 31 individuals per 0.25 m². Potential production was calculated to be 20 g ash free dry weight per m²/year, including a loss of 9 g due to mortality.

Growth rate
Growth rate of Venerupis senegalensis varies according to environmental conditions. Quayle (1952) investigated growth rates of Venerupis senegalensis (studied as Venerupis pullastra) from Millport, Scotland. In the first year following settlement, mean monthly growth rate was 1.3 mm per month over the growing period of 6 months. Growth rate was found to increase for the first 4 years of life (maximum growth rate was ca 9 mm per season) after which it began to decrease. Within each growing season, growth rate was found to increase up to the point of spawning, after which it levelled off and then decreased. Johannessen (1973b) investigated growth of Venerupis senegalensis (studied as Venerupis pullastra) from a sheltered beach in western Norway. The spherical shell of the free swimming larvae developed into an oblong shape after settlement, presumably to aid burrowing. At a shell length greater than 40 mm, the shell shape tended towards a flattened circular form, the biological significance of which is unclear. The shell growth rate was found to be approximately constant (ca 15 mm per season) up to a shell length of 40 mm, after which it decreased. Short and/or young individuals were found to grow faster than long and/or old ones.

Diet
Beiras et al. (1993) investigated the effect of increasing food rations on Venerupis senegalensis (studied as Venerupis pullastra). Increased rations of algal food were found to increase ingestion rate and growth. This relationship was found to hold true up to the maximum ration of 300 algal cells/µl. However, at high food concentrations the returns diminished due to decreased absorption efficiency. The optimum food concentration for growth (i.e. maximum increase in biomass per unit weight of food) was 100 cells/µl.
Biology References Fish & Fish, 1996, Hayward & Ryland, 1995b, Hayward et al., 1996, Johannessen, 1973a, Johannessen, 1973b, Quayle, 1952, Beiras et al., 1993,
About MarLIN | Contact, Enquiries & Feedback | Terms & Conditions | Funding | Glossary | Accessibility | Privacy | Sponsorship

Creative Commons License BIOTIC (Biological Traits Information Catalogue) by MarLIN (Marine Life Information Network) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Permissions beyond the scope of this license are available at http://www.marlin.ac.uk/termsandconditions.php. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Based on a work at www.marlin.ac.uk.