MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

A polychaete (Magelona mirabilis)

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Summary

Description

A long, threadlike worm divided into 2 distinct sections by an intervening segment different from the others. The body is square in section, about 2.5 mm wide and between 50 and 170 mm long although it is often much smaller in length. The head end bears a pair of long, thick palps and a prostomium flattened like a duck's bill and often wider than the rest of the body. However, the wider segment (chaetiger 8 or 9) is often hard to distinguish, even with the aid of a microscope (M. Kendall, pers. comm.). The palps are deciduous and it is unusual to find specimens where they are present (M. Kendall, pers. comm.). The palps are often cropped by fish. The palps and front portion of the body are a very soft pink, while the rear portion is greenish grey with white blotches.

Recorded distribution in Britain and Ireland

Expected to occur all around the coasts of Britain and Ireland where suitable substrata occur. Recorded patchily from all British and Irish coasts.

Global distribution

Recorded from North Sea coasts, the Baltic Sea, the Atlantic coast of France and the Mediterranean coast of France.

Habitat

Magelona mirabilis typically burrows in fine sand at low water and in the shallow sublittoral. It does not produce a tube. Magelona mirabilis is adapted for life in highly unstable sediments, characterized by surf, strong currents and sediment mobility.

Depth range

Mid shore to 32 m depth

Identifying features

  • Palps fringed with papillae down one side and inserted ventrally at base of prostomium. However, the palps are rarely present.
  • 8 anterior chaetigers bear only hair-like chaetae.
  • Chaetiger 9 has greatly developed dorsal lappets almost meeting at the mid-line and paddle shaped chaetae forming a broad fan.
  • Remaining chaetigers have smaller, incurved parapodial lappets and relatively few, short, hooded chaetae with double hooks.
  • Terminal segment bears 2 small, anal cirri.

Additional information

Magelona papillicornis is not a true synonym. Magelona papillicornis has not changed its name and still exists off the coasts of Brazil. However, Magelona mirabilis includes the north east Atlantic animals that were once called Magelona papillicornis (M. Kendall, pers. comm.). See Jones (1977) for further taxonomic information.

For detailed notes on the identification of European Magelona sp., see Fiege et al. (2000).

Listed by

- none -

Further information sources

Search on:

Biology review

Taxonomy

PhylumAnnelida
ClassPolychaeta
OrderSpionida
FamilyMagelonidae
GenusMagelona
Authority(Johnston, 1865)
Recent SynonymsMagelona papillicornis F. Müller, 1858

Biology

Typical abundanceSee additional information
Male size range5-17cm
Male size at maturity
Female size rangeMedium(11-20 cm)
Female size at maturity
Growth formVermiform segmented
Growth rateInsufficient information
Body flexibilityHigh (greater than 45 degrees)
Mobility
Characteristic feeding methodSurface deposit feeder
Diet/food source
Typically feeds onDetritus, microalgae, small animals
Sociability
Environmental positionInfaunal
DependencyIndependent.
SupportsNone
Is the species harmful?No information

Biology information

Abundance
Occurs at high densities where environmental conditions are suitable. For example, Kuhl (1972) reported Magelona papillicormis at densities of 279 individuals per 0.1 m² on sandy muddy ground in the Elbe Estuary.
Feeding
Magelona mirabilis feeds by gathering organic material from the sediment surface with its palps. When feeding on poorly sorted material, selectivity may be shown in that magelonids prefer to handle larger particles. Small crustaceans may also be taken as prey, for example, the mucous on the palps may trap a few harpacticoids although this is likely to be incidental (M. Kendall, pers. comm.). In well sorted sand, selectivity may be absent as particles with a high organic content have already been concentrated by other means (Fauchald & Jumars, 1979).

Habitat preferences

Physiographic preferencesOpen coast, Strait / sound, Enclosed coast / Embayment
Biological zone preferencesLower eulittoral, Lower infralittoral, Sublittoral fringe, Upper circalittoral, Upper infralittoral
Substratum / habitat preferencesCoarse clean sand, Fine clean sand
Tidal strength preferencesModerately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.)
Wave exposure preferencesExposed, Moderately exposed, Sheltered, Very exposed
Salinity preferencesFull (30-40 psu), Variable (18-40 psu)
Depth rangeMid shore to 32 m depth
Other preferences
Migration PatternNon-migratory / resident

Habitat Information

-

Life history

Adult characteristics

Reproductive typeGonochoristic (dioecious)
Reproductive frequency Annual protracted
Fecundity (number of eggs)No information
Generation time1-2 years
Age at maturityInsufficient information
SeasonSee additional information
Life span2-5 years

Larval characteristics

Larval/propagule type-
Larval/juvenile development Planktotrophic
Duration of larval stageNo information
Larval dispersal potential Greater than 10 km
Larval settlement periodInsufficient information

Life history information

Reproductive data concerning Magelona mirabilis is scarce (Fiege et al., 2000). The data that is available suggests that the reproductive period in Magelona mirabilis varies with geographic location and the breeding season of many polychaetes is known to vary with latitude. Fiege et al. (2000) reported males with sperm masses in St. Andrews, Scotland, in March and females with eggs in Berwick-upon-Tweed in March whilst egg bearing females in Lancieux, France, were recorded in May.
It is generally agreed that Magelona mirabilis displays characteristics typical of an r-selected species, i.e. rapid reproduction, short lifespan and high dispersal potential (Krönke, 1990; Niermann et al., 1990), and is characteristic of shallow, disturbed, non-successional habitats (M. Kendall, pers. comm.).

Sensitivity reviewHow is sensitivity assessed?

Physical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate High
Magelona mirabilis is an infaunal species which lives in the top few centimetres of fine sand substrata (Fiege et al., 2000). The majority of the population would be removed along with the substratum, e.g. as a result of channel dredging activities, and therefore intolerance is assessed as high. Recoverability is recorded as high (see additional information below).
Low Immediate Not sensitive Low
Magelona mirabilis lives infaunally in fine sand and moves by burrowing. It deposit feeds at the surface by extending contractile palps from its burrow. An additional 5 cm layer of sediment would result in a temporary cessation of feeding activity, and therefore growth and reproduction are likely to be compromised. However, Magelona mirabilis would be expected to quickly relocate to its favoured depth, with no mortality, and hence an intolerance of low is recorded. Once the animals have relocated to the surface, feeding activity should return to normal and therefore a recoverability of immediate is recorded.
Tolerant* Not relevant Not sensitive* Very low
Magelona mirabilis is unlikely to be perturbed by an increase in suspended sediment as it lives infaunally. It is a deposit feeder, gathering organic particles from the sediment surface with its mobile palps. An increase in suspended sediment may result in greater food availability at the sediment surface, potentially enhancing growth and reproduction of Magelona mirabilis. However, the species would only benefit if there was a significant proportion of organic matter in the suspended sediment and if food was previously limiting.
Intermediate Immediate Very Low
Magelona mirabilis is a surface deposit feeder and therefore relies on a supply of nutrients at the sediment surface. A decrease in the suspended sediment may result in a decreased rate of deposition on the substratum surface and therefore a reduction in food availability. Magelona mirabilis is a short-lived species and a reduction in the amount of suspended sediment is likely to impair growth and may result in the death of some of the population (M. Kendall, pers. comm.). The benchmark states that this change would occur for one month and therefore an intolerance of intermediate has been recorded. As soon as suspended sediment levels increased, feeding activity would return to normal and hence recovery is recorded as immediate.
Intermediate High Low Very low
Magelona mirabilis lives infaunally and is therefore likely to be protected from desiccation stress. A proportion of the population lives in the intertidal (Fiege et al., 2000) suggesting the species is tolerant to emersion of its substratum. However, if an individual were removed from the substratum, exposed to the air and was unable to reburrow, for example by bait digging, mortality would be likely to result. Intolerance is therefore assessed as intermediate. Recoverability is recorded as high (see additional information below).
Intermediate High Low Low
A proportion of the population of Magelona mirabilis lives in the intertidal zone (Fiege et al., 2000). The species lives infaunally and hence is not likely to suffer from desiccation stress unless displaced. However, Magelona mirabilis can only feed when immersed and therefore will experience reduced feeding opportunities. If it burrows to find immersed sediment, the digging will result in the palps being lost (M. Kendall, pers. comm.). Over the course of a year the resultant energetic cost is likely to cause some mortality. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below).
Tolerant Not relevant Not sensitive High
Magelona mirabilis thrives in the subtidal zone (Fiege et al., 2000) and therefore could potentially benefit from a decreased emergence regime. It is possible that decreased emergence would allow the species to colonize further up the shore.
Intermediate High Low Very low
Magelona mirabilis is adapted to life in areas with strong currents, high wave exposure and unstable sediments (Lackshewitz & Reise, 1998). However, increased water flow rate may remove sediment or change the sediment characteristics in which the species lives, primarily by re-suspending and preventing deposition of finer particles (Hiscock, 1983). Magelona mirabilis typically occurs in sandy sediments (Fiege et al., 2000), a substratum which may be eroded by increases in water flow. Additionally, the consequent lack of deposition of particulate matter at the sediment surface would reduce food availability. The resultant energetic cost over one year would be likely to result in some mortality. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below).
Intermediate High Low Low
Magelona mirabilis is adapted to life in areas with strong currents, high wave exposure and unstable sediments (Lackshewitz & Reise, 1998). Decreased water movement would result in increased deposition of fine suspended sediment (Hiscock, 1983), changing the sediment characteristics of the habitat in which the species lives. Over the course of a year, it is likely that some mortality would occur and an intolerance of intermediate is recorded. Recoverability is assessed as high (see additional information below).
No information No information No information Not relevant
No information was found concerning the intolerance of Magelona mirabilis to an increase in temperature.
Intermediate High Low Moderate
The abundance of Magelona mirabilis experienced a sharp decline following the severe winter of 1995 / 1996 in the Wadden Sea, the Netherlands (Armonies et al., 2001). Between 1992 and 1995 the average abundance in an area 5 km west of Sylt was 2901 individuals per m²and by 1996 / 1997, abundance had fallen to 138 per m² (Armonies et al., 2001). The average water temperature in List Harbour, near Sylt, over the severe winter was 0.5 °C which was 2.7 °C and 3.7 °C below the mean water temperatures of the moderate and mild winters of 1996 / 1997 and 1997 / 1998 respectively (Strasser & Günther, 2001). This change in temperature is comparable to the chronic change in the benchmark and therefore an intolerance of intermediate has been recorded. Armonies et al. (2001) commented that, following the severe winter, recovery in this species was 'slow'. However, 'slow' was not quantified although the study suggests that the species had not yet recovered by the 1996 / 1997 sampling.
Low Very high Very Low Low
Magelona mirabilis does not require light and therefore is not directly affected by an increase in turbidity. However, increased turbidity may affect primary production in the water column and therefore reduce the availability of diatom food arriving at the sediment surface. In addition, primary production by the micro-phyto benthos on the sediment surface may be reduced, further decreasing food availability. However, Magelona mirabilis also feeds on detritus although it is not known what proportion of the diet is this represents (M. Kendall, pers. comm.). It is possible that, over the course of the year, growth and fecundity may be reduced and an intolerance of low is recorded. However, as soon as light levels return to normal, primary production will increase and hence recoverability is recorded as very high.
Tolerant Not relevant Not sensitive High
Magelona mirabilis does not require light and therefore would not be directly affected by a decrease in turbidity. However, decreased turbidity may increase primary production in the water column and by the micro-phyto benthos on the sediment surface. This could potentially increase the amount of food available to Magelona mirabilis although this species also feeds on detritus and it is not known what proportion of the diet diatoms represent (M. Kendall, pers. comm.), nor if it is limiting and therefore, tolerant has been recorded.
Intermediate High Low Low
Magelona mirabilis is adapted to life in areas with strong currents, high wave exposure and unstable sediments (Lackshewitz & Reise, 1998). However, a further increase in wave action may affect the species in several ways (Hiscock, 1983). Strong wave action is likely to cause damage or withdrawal of delicate feeding structures resulting in loss of feeding opportunities and compromised growth. Furthermore, individuals may be damaged or dislodged by scouring from sand and gravel mobilized by increased wave action. The sediment they live in may be eroded and burrowing would result in the loss of the delicate palps (M. Kendall, pers. comm.). It is likely that some mortality would result from the considerations discussed above and therefore an intolerance of intermediate is recorded. Recoverability is recorded as high (see additional information below).
Intermediate High Low Low
Magelona mirabilis is adapted to life in areas with strong currents, high wave exposure and unstable sediments (Lackshewitz & Reise, 1998). Decreased wave exposure over the course of a year is likely to result in the establishment of a finer sediment habitat. It is expected that some mortality would occur and therefore intolerance is assessed as intermediate. Recoverability is recorded as high (see additional information below).
Tolerant Not relevant Not sensitive Low
No information was found concerning the intolerance of Magelona mirabilis to noise. However, it is unlikely to be affected by noise and vibration at the level of the benchmark.
Tolerant Not relevant Not sensitive High
No information was found concerning the intolerance of Magelona mirabilis to visual disturbance. The species has no eyes (Hayward & Ryland, 1995) and therefore would not be expected to respond to visual cues.
Intermediate High Low Low
Magelona mirabilis is a soft bodied organism which exposes its palps at the surface while feeding. The species lives infaunally in sandy sediment, usually within a few centimetres of the sediment surface. Physical disturbance, such as dredging or dragging an anchor, would be likely to penetrate the upper few centimetres of the sediment and cause physical damage to Magelona mirabilis. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below).
Intermediate High Low Low
Jones (1968) observed burrowing behaviour of Magelona sp. in the laboratory. Worms rapidly buried themselves following displacement to the sediment surface. However, this burrowing will result in damage to the palps (M. Kendall, pers. comm.). Furthermore, displacement to the sediment surface would increase the risk of predation by bottom feeding fish, to which Magelona mirabilis is particularly vulnerable (Hunt, 1925; Hayward & Ryland, 1995). Some mortality may result and therefore intolerance is assessed as intermediate. Recoverability is recorded as high (see additional information below).

Chemical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
No information No information No information Not relevant
There is no evidence relating directly to the effects of synthetic chemicals on Magelona mirabilis. However, there is evidence from other polychaete species. Collier & Pinn (1998), for example, investigated the effect on the benthos of invermectin, a feed additive treatment for infestations of sea-lice on farmed salmonids. The polychaete Hediste diversicolor experienced 100% mortality within 14 days when exposed to 8 mg / m² of invermectin in a microcosm.
Polychaetes are, however, highly diverse and have different tolerances in different species (M. Kendall, pers. comm.). It is therefore not advisable to make assumptions about one particular polychaete species based on evidence relating to another.

Heavy metal contamination
No information Not relevant No information Not relevant
Little information was found concerning the intolerance of Magelona sp. to heavy metal contamination. However, Boilly & Richard (1978) stated that the presence of Magelona mirabilis is indicative of sediments which have been contaminated with iron. Studies on a dredge spoil disposal site in the harbours of Boulogne and Dunkerque in France (Bourgain et al., 1988) found higher densities of Magleona mirabilis three months after the dumping of dredge spoil than after five months, that is, when the metal contamination of the sediments was higher. No information regarding the effect of other metals on this species was found.
Hydrocarbon contamination
No information No information No information Not relevant
Suchanek (1993) reviewed the effects of oil spills on marine invertebrates and concluded that, in general, on soft sediment habitats, infaunal polychaetes, bivalves and amphipods were particularly affected. However, no information was found concerning the intolerance of Magelona mirabilis to hydrocarbon contamination.
Evidence exists for other polychaete species. For example, Levell (1976) found that single spills of crude oil and oil / dispersant (BP 11 00X) mixtures caused a 25 - 50 % reduction in the abundance of Arenicola marina in addition to a reduction in feeding activity. Up to four repeated spillages (over a ten month period) resulted in complete eradication of the affected population either due to death or migration out of the sediment. It was also noted that recolonization was reduced although not completely prevented. In contrast, observations on Aphelochaeta marioni following the Amoco Cadiz oil spill in March, 1978 saw an increase in the abundance of this species after the spill (Dauvin, 1982, 2000).

Polychaetes are, however, highly diverse and have different tolerances in different species (M. Kendall, pers. comm.). It is therefore not advisable to make assumptions about one particular polychaete species based on evidence relating to another.
Radionuclide contamination
No information No information No information Not relevant
No information was found concerning the intolerance of Magelona mirabilis to radionuclide contamination.
Changes in nutrient levels
Intermediate High Low Low
As a surface deposit feeder, Magelona mirabilis relies on a supply of organic matter at the sediment surface. Increased nutrient levels in the water column would be expected to result in increased deposition of organic matter at the sediment surface, and therefore moderate nutrient enrichment may be beneficial to Magelona mirabilis. Indeed, Kröncke (1990) postulated that the increase in certain species, including Magelona sp., on the Dogger Bank between 1951 and 1987 may be due to eutrophication. However, Niermann (1996) noted that Magelona sp. decreased in abundance following a nutrient enrichment event in the North Sea, probably because the species were adapted to living in sediments with low or moderate amounts of organic carbon. Intolerance is therefore assessed as intermediate. Recovery is recorded as high (see additional information below).
Tolerant Not relevant Not sensitive High
Magelona mirabilis occurs on the open coast where sea water is at full salinity (Fiege et al., 2000) and is therefore probably relatively tolerant of increases in salinity. No information was found concerning the intolerance of the species to hypersaline conditions.
No information No information No information Not relevant
Magelona mirabilis occurs in the Baltic Sea (Fiege et al., 2000), where salinity is typically lower than in the open ocean. It is likely that some populations of Magelona mirabilis are adapted to reduced salinity habitats however no information on the effects of an overall decrease in salinity were found.
Tolerant Not relevant Not sensitive High
Niermann et al. (1990) reported the changes in a fine sand community from the German Bight in an area with regular seasonal hypoxia. In 1983, oxygen tension fell to exceptionally low levels; < 3 mg O2/dm3 in large areas and < 1 mg O2/dm3 in some places. Species richness was reduced by 30-50% following this event and overall biomass was reduced. Niermann et al. (1990) reported that Magelona sp. remained abundant during the period of hypoxia, and, in fact, decreased slightly in abundance on resumption of normoxia. The benchmark level of hypoxia is 2 mg O2/l for one week. The evidence suggests that Magelona mirabilis would survive this and so is assessed as not sensitive.

Biological pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
No information No information No information Not relevant
No information was found concerning the infection of Magelona mirabilis by microbial pathogens.
No information No information No information Not relevant
There is no evidence to suggest that Magelona mirabilis is susceptible to displacement by non-native species.
Not relevant Not relevant Not relevant Not relevant
There is no evidence that Magelona mirabilis is extracted deliberately.
No information No information No information Not relevant
No information was found concerning the effects of extraction of other species on Magelona mirabilis. The species is potentially at risk from fishing activities on sandy substrata, e.g. beam trawling for flatfish, and extraction of sand by the aggregate industry (Eno, 1991).

Additional information

It is generally agreed that Magelona mirabilis displays characteristics typical of an r-selected species, i.e. rapid reproduction, short life span and high dispersal potential (Kröncke, 1990; Niermann et al., 1990). The larval dispersal phase would potentially allow the species to colonize remote habitats.
It is expected that populations of Magelona mirabilis would recover within 2 or 3 years and certainly within 5 years. Recoverability is therefore assessed as high.

Importance review

Policy/legislation

- no data -

Status

Non-native

Importance information

It is possible that Magelona mirabilis contributes to the energy budget of flatfish nursery grounds along with spionids and tellinids (M. Kendall, pers. comm.).

Bibliography

  1. Armonies, W., Herre, E. & Sturm, M., 2001. Effects of the severe winter 1995 / 1996 on the benthic macrofauna of the Wadden Sea and the coastal North Sea near the island of Sylt. Helgoland Marine Research, 55, 170-175.

  2. Bat, L. & Raffaelli, D., 1998. Sediment toxicity testing: a bioassay approach using the amphipod Corophium volutator and the polychaete Arenicola marina. Journal of Experimental Marine Biology and Ecology, 226, 217-239.

  3. Boilly, B. & Richard, A., 1978. Accumulation de fer chez une annelide polychete: Magelona papillicornis F. Müller. Compte Rendu Hebdomadaire Acadamie Sciences de Paris, 286, 1005-1008.

  4. Bosselmann, A., 1989. Larval plankton and recruitment of macrofauna in a subtidal area in the German Bight. In Reproduction, Genetics and Distributions of Marine Organisms (ed. J.S. Ryland & P.A. Tyler), pp. 43-54.

  5. Bourgain, J-L., Dewez, S., Dewarumez, J-M., Richard, A. & Beck, C., 1988. Les rejets de vases portuaires: impacts sedimentologiques et biologiques sur le peuplement des sables a Ophelia borealis de la manche orientale et de la mer du nord. Journal de Recherche Océanographique, 13, 25-27.

  6. Bryan, G.W. & Gibbs, P.E., 1983. Heavy metals from the Fal estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Plymouth: Marine Biological Association of the United Kingdom. [Occasional Publication, no. 2.]

  7. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  8. Dauvin, J.C., 1982. Impact of Amoco Cadiz oil spill on the muddy fine sand Abra alba - Melinna palmata community from the Bay of Morlaix. Estuarine and Coastal Shelf Science, 14, 517-531.

  9. Dauvin, J.C., 2000. The muddy fine sand Abra alba - Melinna palmata community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill. Marine Pollution Bulletin, 40, 528-536.

  10. Eno, N.C., 1991. Marine Conservation Handbook. English Nature, Peterborough.

  11. Fauchald, J. & Jumars, P.A., 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology: an Annual Review, 17, 193-284.

  12. Fernandez, T.V. & Jones, N.V., 1987. Some studies on the effect of zinc on Nereis diversicolor (Polychaeta: Annelida). Tropical Ecology, 28, 9-21.

  13. Fiege, D., Licher, F. & Mackie, A.S.Y., 2000. A partial review of the European Magelonidae (Annelida : Polychaeta) Magelona mirabilis redefined and M. johnstoni sp. nov. distinguished. Journal of the Marine Biological Association of the United Kingdom, 80, 215-234.

  14. Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

  15. Gibbs, P.E., Langston, W.J., Burt, G.R. & Pascoe, P.L., 1983. Tharyx marioni (Polychaeta) : a remarkable accumulator of arsenic. Journal of the Marine Biological Association of the United Kingdom, 63, 313-325.

  16. Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

  17. Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

  18. Hiscock, K., 1983. Water movement. In Sublittoral ecology. The ecology of shallow sublittoral benthos (ed. R. Earll & D.G. Erwin), pp. 58-96. Oxford: Clarendon Press.

  19. Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

  20. Hunt, J.D., 1925. The food of the bottom fauna of the Plymouth fishing grounds. Journal of the Marine Biological Association of the United Kingdom, 13, 560-599.

  21. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

  22. Jones, M.L., 1968. On the morphology, feeding and behaviour of Magelona sp. Biological Bulletin of the Marine Laboratory, Woods Hole, 134, 272-297.

  23. Jones, M.L., 1977. A redescription of Magelona papillicornis F. Müller.

  24. Kröncke, I., 1990. Macrofauna standing stock of the Dogger Bank. A comparison: II. 1951 - 1952 versus 1985 - 1987. Are changes in the community of the northeastern part of the Dogger Bank due to environmental changes? Netherlands Journal of Sea Research, 25, 189-198.

  25. Kuhl, H., 1972. Hydrography and biology of the Elbe Estuary. Oceanography and Marine Biology: an Annual Review, 10, 225-309.

  26. Lackschewitz, D. & Reise, K., 1998. Macrofauna on flood delta shoals in the Wadden Sea with an underground association between the lugworm Arenicola marina and the amphipod Urothoe poseidonis. Helgolander Meeresuntersuchungen, 52, 147-158.

  27. Levell, D., 1976. The effect of Kuwait Crude Oil and the Dispersant BP 1100X on the lugworm, Arenicola marina L. In Proceedings of an Institute of Petroleum / Field Studies Council meeting, Aviemore, Scotland, 21-23 April 1975. Marine Ecology and Oil Pollution (ed. J.M. Baker), pp. 131-185. Barking, England: Applied Science Publishers Ltd.

  28. Niermann, U., 1996. Fluctuation and mass occurrence of Phoronis muelleri (Phoronidea) in the south-eastern North Sea during 1983-1988. Senckenbergiana Maritima, 28, 65-79.

  29. Niermann, U., Bauerfeind, E., Hickel, W. & Westernhagen, H.V., 1990. The recovery of benthos following the impact of low oxygen content in the German Bight. Netherlands Journal of Sea Research, 25, 215-226.

  30. Picton, B.E. & Costello, M.J., 1998. BioMar biotope viewer: a guide to marine habitats, fauna and flora of Britain and Ireland. [CD-ROM] Environmental Sciences Unit, Trinity College, Dublin., http://www.itsligo.ie/biomar/

  31. Probert, P.K., 1981. Changes in the benthic community of china clay waste deposits is Mevagissey Bay following a reduction of discharges. Journal of the Marine Biological Association of the United Kingdom, 61, 789-804.

  32. Rasmussen, A.D., Banta, G.T. & Anderson, O., 1998. Effects of bioturbation by the lugworm Arenicola marina on cadmium uptake and distribution in sandy sediments. Marine Ecology Progress Series, 164, 179-188.

  33. Soemodinoto, A., Oey, B.L. & Ibkar-Kramadibrata, H., 1995. Effect of salinity decline on macrozoobenthos community of Cibeurum River estuary, Java, Indonesia. Indian Journal of Marine Sciences, 24, 62-67.

  34. Strasser, M. & Günther, C-P., 2001. Larval supply of predator and prey: temporal mismatch between crabs and bivalves after a severe winter in the Wadden Sea. Journal of Sea Reasearch, 46, 57-67.

  35. Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523.

Citation

This review can be cited as:

Rayment, W.J. 2007. Magelona mirabilis A polychaete. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/species/detail/1630

Last Updated: 21/08/2007