Grazed, mixed Laminaria hyperborea and Saccharina latissima on sheltered infralittoral rock

Summary

UK and Ireland classification

Description

Silted infralittoral rock with mixed Laminaria hyperborea and Saccharina latissima kelp forest, intensively grazed by the echinoderm Echinus esculentus and the gastropods Gibbula cineraria and Calliostoma zizyphinum. Although both kelp species can occur in equal abundance (Common), Laminaria hyperborea  usually dominates. The grazing-resistant brown seaweed Desmarestia aculeata and Cutleria multifida may be present. A similar variety of red seaweeds to those found in the ungrazed kelp forest (LhypSlat.Ft) may occur beneath the kelp canopy, but in much lower abundance. As grazing intensity increases the seaweed cover decreases, and some sites are reduced to the bare appearance of encrusting brown and coralline algae beneath the kelp canopy. The Laminaria hyperborea  stipes generally support more seaweeds than the rock beneath, including Cryptopleura ramosa, Delesseria sanguinea, Phycodrys rubens and Bonnemaisonia hamifera. The stipes may also support sometimes dense ascidians Clavelina lepadiformis and Ciona intestinalis and the echinoderm Antedon bifida. The kelp fronds are often densely covered by the hydroid Obelia geniculata. At the most intensively grazed sites even the kelp stipes are bare. Although the rock appears bare, between boulders and in crevices there are often the brittlestar Ophiothrix fragilis and the crabs Necora puber and Pagurus bernhardus. The tube-building Spirobranchus triqueter and bryozoan crusts are commonly found on any vertical surfaces. (Information from Connor et al., 2004; JNCC, 2015)

Depth range

0-5 m, 5-10 m, 10-20 m

Additional information

-

Listed By

Sensitivity reviewHow is sensitivity assessed?

Sensitivity characteristics of the habitat and relevant characteristic species

IR.LIR.K.LhypSlat plus sub-biotopes are characterized by mixed canopies of Laminaria hyperborea with Saccharina latissima (syn. Laminaria saccharina). IR.LIR.K.LhypSlat is predominantly found in Scottish sea lochs, however is also found at sheltered locations around the UK. Although both species can occur in equal abundance (common) Laminaria hyperborea usually dominates the biotope. Underneath the kelp canopy and on kelp stipes there is a community of red seaweeds which includes; Delesseria sanguinea, Plocamium cartilagineum, Cryptopleura ramosa and Metacallophyllis laciniataEchinus esculentus also defines IR.LIR.K.LhypSlat.Gz, in which intensive grazing diminishes the understorey community.

In wave exposed locations other laminarian kelps (e.g. Laminaria hyperborea) can out-compete Saccharina lattisma or form mixed canopies as in IR.LIR.K.LhypSlat. IR.LIR.K.LhypSlat is typically recorded in sheltered sea lochs of Scotland, however is also recorded in other sheltered locations around the UK. IR.LIR.K.LhypSlat represents an intermediate biotope between a suite of exposed-moderately wave exposed Laminaria hyperborea dominated biotopes and the Saccharina latissima dominated IR.LIR.K.Slat biotopes found predominantly from sheltered-ultra wave sheltered environments (Connor et al., 2004). Observations from Norwegian fjords have also recorded IR.LIR.K.LhypSlat forming a thin band above IR.LIR.K.Slat (Svendsen & Kain, 1971).

Kelp beds increase the three dimensional complexity of unvegetated rock (Norderhaug, 2004, Norderhaug et al., 2007, Norderhaug & Christie, 2011, Gorman et al., 2012; Moy & Christie, 2012; Smale et al., 2013), support high local diversity, abundance and biomass of epibenthic species (Smale et al., 2013), and serve as nursery grounds for a number of commercial important species, e.g. Atlantic cod and pollock (Rinde et al., 1992).

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all characterizing species in the biotope. There is an abundance of literature for regeneration of mono-specific Laminaria hyperborea beds, however at the time of writing there is limited research for the recovery of mixed kelp canopies. For this sensitivity assessment Echinus esculentus, Laminaria hyperborea and Saccharina latissima are the primary foci of research, however it is recognized that the understorey red seaweed communities also define the biotope. Examples of important species groups are mentioned where appropriate.

Resilience and recovery rates of habitat

Saccharina lattisima is a perennial kelp characteristic of wave sheltered sites of the North East Atlantic, distributed from northern Portugal to Spitzbergen, Svalbard (Birkett et al., 1998; Conor et al., 2004; Bekby & Moy, 2011; Moy & Christie, 2012). Saccharina lattisma is capable of reaching maturity within 15-20 months (Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke, 1948). Maximum growth has been recorded in late winter early spring, in late summer and autumn growth rates slow (Parke, 1948; Lüning, 1979; Birkett et al., 1998). The overall length of the sporophyte may not change during the growth season due to marginal (distal) erosion of the blade, but extension growth of the blade has been measured at 1.1 cm/day, with total length addition of over 2.25m of tissue per year (Birkett et al., 1998). Saccharina latissima has a heteromorphic life strategy.  Vast numbers of zoospores are released from sori located centrally on the blade between autumn and winter. Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, germinate into juvenile sporophytes from winter-spring.  Kelp zoospores are expected to have a large dispersal range, however zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen et al., 1995). Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area (Kain, 1979; Fredriksen et al., 1995).

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). However, Bolton & Lüning (1982) reported an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte. Growth was inhibited by 50-70%  at 20°C and, all experimental specimens completely disintegrated after 7 days at 23°C . In the field Saccharina latissima has however shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. Therefore, the response of Saccharina latissima to a change in temperatures is likely to be locally variable.

In 2002 a large scale decline of Saccharina latissima was discovered on the Norwegian coast (Moy & Christie, 2012). A subsequent large survey was undertaken between 2004-2009 of 660 sites covering 34,000km of south and west Norway to assess the decline of Saccharina latissima abundance and distribution (Moy & Christie, 2012). The survey indicated an 83% reduction of Saccharina latissima forests across the south Norwegian region of Skagerrak.  The west Norwegian coast was less affected, but Saccharina latissima  was either absent or very sparse at 38% of sites where it was expected to be abundant.  At all sites where Saccharina latissima was sparse a community of ephemeral macro-algae species was dominant and persisted throughout the study period (2004-2009).  Bekby & Moy (2011) modelled the regional decline which indicated a decline of 50.7% of Saccharina latissima from Skagerrak, Norway. Approximately 50% of Europe’s Saccharina latissima is found in Norway (Moy et al., 2006), therefore, despite large discrepancies between the two estimates of Saccharina latissima decline (50.7-83%) the results indicated a significant decline in Saccharina latissima across the region. Moy & Christie (2012) suggested the ephemeral filamentous macroalgae communities represented a stable state shift that had persisted throughout the study period (2004-2009).  Although no measurements were made, they suggested that the decline was due to low tidal movement and wave action in the worst affected areas combined with the impacts of dense human populations and increased land run-off a Multiple stressors such as eutrophication, increasing regional temperature, increased siltation and overfishing may also be acting synergistically to cause the observed habitat shift.

Kelp biotopes are partially reliant on low (or no) populations of sea urchins, primarily the species; Echinus esculentus, Paracentrotus lividus and Strongylocentrotus droebachiensis, which graze directly on macroalgae, epiphytes and the understorey community. Multiple authors (Steneck et al., 2002; Steneck et al., 2004; Rinde & Sjotum, 2005; Norderhaug & Christie, 2009; Smale et al., 2013) have reported dense aggregations of sea urchins to be a principal threat to kelp biotopes of the North Atlantic. In northern Norway intense urchin grazing create expansive areas known as ‘urchin barrens’, in which a shift can occur from kelp dominated biotopes to those characterized by coralline encrusting algae, with a resultant reduction in biodiversity (Leinaas & Christie, 1996; Steneck et al., 2002, Norderhaug & Christie, 2009). Leinaas & Christie (1996) removed Strongylocentrotus droebachiensis from ‘urchin barrens’ and observed a succession effect. The substratum was colonized initially by filamentous algae and,after a couple of weeks, these were out-competed by Saccharina latissima. However after 2-4 years, Laminaria hyperborea dominated the community. These results demonstrate that Saccharina latissima will re-establish quickly in optimal conditions; however in moderately wave exposed conditions will be out-competed by Laminaria hyperborea.

Reports of large scale urchin barrens within the North East Atlantic are generally limited to regions of the North Norwegian and Russian Coast (Rinde & Sjøtun, 2005, Norderhaug & Christie, 2009). Within the UK urchin grazed biotopes (IR.MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar, IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz) are generally localised to a few regions in North Scotland and Ireland (Smale et al., 2013; Stenneck et al., 2002; Norderhaug & Christie 2009; Connor et al., 2004). IR.MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar, IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz are characterized by a canopy forming kelp, however, urchin grazing decreases the abundance and diversity of understorey species. In the isle of Man Jones & Kain (1967) observed low Echinus esculentus grazing pressure can control the lower limit of Laminaria hyperborea in the and remove Laminaria hyperborea sporelings and juveniles. Urchin abundances in ‘urchin barrens’ have been reported as high as 100 individuals/m2 (Lang & Mann, 1978).  Kain (1967) reported urchin abundances of 1-4/m2 within experimental plots of the Isle of Man.  Therefore while ‘urchin barrens’ are not presently a large scale issue within the UK, relatively low urchin grazing has been found to control the depth distribution of Laminaria hyperborea, negatively impact on Laminaria hyperborea recruitment and reduce the understorey community abundance and diversity.

In favourable conditions  Laminaria hyperborea can recover following disturbance events reaching comparable plant densities and size to pristine Laminaria hyperborea beds within 2-6 years (Kain, 1979; Birkett et al., 1998; Christie et al., 1998).  Holdfast communities may recover in 6 years (Birkett et al., 1998). Full epiphytic community and stipe habitat complexity regeneration requires over 6 years to recover (possibly 10 years).  These recovery rates were based on discrete kelp harvesting events and recurrent disturbance occurring frequently within 2-6 years of the initial disturbance is likely to lengthen recovery time (Birkett et al., 1998, Burrows et al., 2014). Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year for several years. The first colonizers and succession community differed between blocks and at what time of year the blocks were cleared however within 2 years of clearance the blocks were dominated by Laminaria hyperborea.

Laminaria hyperborea has a heteromorphic life strategy, A vast number of zoospores (mobile asexual spores) are released into the water column between October-April (Kain & Jones, 1964). Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, develop into sporophytes and mature within 1-6 years (Kain, 1979; Fredriksen et al., 1995; Christie et al., 1998). Laminaria hyperborea zoospores have a recorded dispersal range of approximately 200m (Fredriksen et al., 1995). However, zoospore dispersal is greatly influenced by water movements, and zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen et al., 1995). Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area (Kain, 1979, Fredriksen et al., 1995).

Other factors that are likely to influence the recovery of kelp biotopes is competitive interactions with the Invasive Non Indigenous Species (INIS) Undaria pinnatifida (Smale et al., 2013; Brodie et al., 2014; Heiser et al., 2014). Undaria pinnatifida has received a large amount of research attention as an INIS which could out-compete UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was first recorded in Plymouth Sound, UK in 2003 (NBN, 2015) subsequent surveys in 2011 have reported that Undaria pinnatifida is widespread throughout Plymouth Sound, colonizing rocky reef habitats. Where Undaria pinnatifida is present there was a significant decrease in the abundance of other Laminaria species, including Laminaria hyperborea (Heiser et al., 2014). In new Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete Undaria pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery of the substratum was partially due to an annual Undaria pinnatifida die back, which as noted by Heiser et al. (2014) did not occur in Plymouth sound, UK. It is unknown whether Undaria pinnatifida will out-compete native macro-algae in the UK. However from 2003-2011 Undaria pinnatifida had spread throughout Plymouth sound, UK, becoming a visually dominant species at some locations within summer months (Hieser et al., 2014). At the time of writing there is limited evidence available to assess the ecological impacts of Undaria pinnatifida on Laminaria hyperborea associated communities. Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70°C (see Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted by Farrell & Fletcher (2006) once established Undaria pinadifida resists most attempts of long-term removal. Kelp biotopes are unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely to occur.

Echinus esculentus is a sea urchin found within Northeast Atlantic, recorded from Murmansk Coast, Russia to Portugal (Hansson, 1998). Echinus esculentus, along with other urchins, is an important algal grazer in the North East Atlantic. (Connor et al., 2004). Echinus esculentus is estimated to have a lifespan of 8-16 years (Nichols, 1979; Gage, 1992) and reach sexual maturity within 1-3 years (Tyler-Walters, 2008). Maximum spawning occurs in spring although individuals may spawn over a protracted period throughout the year. Gonad weight is at it’s maximum in February/March in English Channel (Comely & Ansell, 1989) but decreases during spawning in spring and then increases again through summer and winter until the next spawning season. Spawning occurs just before the seasonal rise in temperature in temperate zones but is probably not triggered by rising temperature (Bishop, 1985). Echinus esculentus is a broadcast spawner, with a complex larval life history which includes a blastula, gastrula and a characteristic 4 armed echinopluteus stage that forms an important component of the zooplankton. MacBride (1914) observed planktonic larval development could take 45-60 days in captivity. Recruitment is sporadic or variable depending on locality, e.g. Millport populations showed annual recruitment, whereas few recruits were found in Plymouth populations during Nichols studies between 1980-1981 (Nichols, 1984). Bishop & Earll (1984) suggested that the population of Echinus esculentus at St Abbs had a high density and recruited regularly whereas the Skomer population was sparse, ageing and had probably not successfully recruited larvae in the previous 6 years (Bishop & Earll, 1984). Comely & Ansell (1988) noted that the largest number of Echinus esculentus occurred below the kelp forest.

Echinus esculentus is a mobile species (Tyler-Walters, 2008) and could therefore migrate and re-populate an area quickly if removed. For example, Lewis & Nichols (1979) found that adults were able to colonize an artificial reef in small numbers within 3 months and the population steadily grew over the following year. If completely removed from a site and local populations are naturally sparse then recruitment may be dependent on larval supply which can be highly variable. As suggested by Bishop & Earll (1984) the Skomer, Wales Echinus esculentus population had most likely not successfully recruited for 6 years which would suggest the mature population would be highly sensitive to removal and may not return for several years. On 19th November 2002 the Prestige oil tanker spilled 63 000t of fuel 130 nautical miles off Galicia, Spain. High wave exposure and strong weather systems increased mixing of the oil to “some” depth within the water column, causing sensitive faunal communities to be effected. Preceding and for nine years following the oil spill, the biological community of Guéthary, France was monitored. Following the oil spill taxonomic richness decreased significantly from 57 recorded species to 41, which included the loss of Echinus esculentus from the site. 2-3 years after the oil spill taxonomic richness had increased to pre-spill levels and Echinus esculentus had returned (Castège et al., 2014).

Resilience assessment. Of the 2 kelp species (Laminaria hyperborea and Saccharina latissima) that characterize IR.LIR.K.LhypSlat plus associated sub-biotopes, Laminaria hyperborea is the slowest to recover following disturbance. Laminaria hyperborea can regenerate from disturbance within a period of 1-6 years, and the associated community within 7-10 years. Saccharina latissima has reportedly a rapid recovery rate or re-generation time, following clearance of Strongylocentrotus droebachiensis from ‘urchin Barrens’ Saccharina latissima was a rapid colonizer appearing after a few weeks, and can reach maturity within 15-20 months (Birkett et al., 1998). Echinus esculentus can reportedly reach sexual maturity within 1-2 years (Tyler-Walters, 2008), however as highlighted by Bishop & Earll (1984) and Castège et al., (2014) recovery may take 2-6 years (possibly more if local recruitment is poor).   Due to comparatively slow growth rates resilience estimates are largely based on Laminaria hyperborea, however the recovery of Saccharina latissima and the understorey red seaweed is accounted for where relevant.  Resilience has therefore been assessed as ‘Medium’.

Hydrological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Temperature increase (local) [Show more]

Temperature increase (local)

Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail

Evidence

Kain (1964) stated that Laminaria hyperborea sporophyte growth and reproduction could occur within a temperature range of 0-20°C. Upper and lower lethal temperatures have been estimated at between 1-2°C above or below the extremes of this range (Birkett et al., 1988).  Above 17°C Laminaria hyperborea gamete survival is reduced (Kain, 1964 & 1971) and gametogenesis is inhibited at 21°C (Dieck, 1992). It is therefore likely that Laminaria hyperborea recruitment will be impaired at a sustained temperature increase of above 17°C. Sporophytes however can tolerate slightly higher temperatures of 20°C. Temperature tolerances for Laminaria hyperborea are also seasonally variable and temperature changes are less tolerated in winter months than summer months (Birkett et al., 1998).

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). Optimal temperature for Saccharina latissima sporophyte growth was 10-15°C (Bolton & Lüning, 1982), while  reported  growth was inhibited by 50-70% at 20°C and all experimental specimens completely disintegrated after 7 days at 23°C.  In the field, Saccharina latissima has however shown significant regional variation in its acclimation response to changing environmental conditions.  For example Gerard & Dubois (1988) found Saccharina latissima sporophytes which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.  Therefore, the response Saccharina latissima to a change in temperatures is likely to be locally variable.

Andersen et al. (2011) transplanted Saccharina latissima in the Skagerrak region, Norway and from 2006-2009. There was annual variation however high mortality occurred from August-November within each year of the experiment. In 2008 of the original 17 sporophytes 6 survived from March-September (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960-2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration which temperatures remain above 20°C. High sea temperatures has been linked to slow growth of Saccharina latissima which is likely to decrease the photosynthetic ability of, and increase the vulnerability of Saccharina latissima to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). These factors combined with establishment of annual filamentous algae in Skegerrak, Norway are likely to prevent the establishment of self sustaining populations in the area (Anderson et al., 2011; Moy & Christie, 2012).

Bishop (1985) suggested that Echinus esculentus cannot tolerate high temperatures for prolonged periods due to increased respiration rate and resultant metabolic stress. Ursin (1960) reported Echinus esculentus occurred at temperatures between 0-18°C in Limfjord, Denmark. Bishop (1985) noted that gametogenesis occurred at 11-19°C however, continued exposure to 19°C disrupted gametogenesis. Embryos and larvae developed abnormally after 24hr exposure to 15°C but normally at 4, 7 and 11°C (Tyler & Young, 1998).

IR.LIR.K.LhypSlat is distributed throughout the UK (Connor et al., 2004). Northern to southern Sea Surface Temperature (SST) ranges from 8-16°C in summer and 6-13°C in winter (Beszczynska-Möller & Dye, 2013).

Sensitivity assessment. A 2°C increase for one year may approach the upper temperature threshold of Echinus esculentus, impair Laminaria hyperborea recruitment processes and Saccharina latissima sporophyte growth.  A 5°C increase for one month combined with high UK summer temperatures is likely to affect Laminaria hyperborea sporophyte growth. Saccharina latissima populations that are not acclimated to >20°C may incur mass mortality within 3 weeks of exposure. Resistance has been assessed as ‘None’, to reflect the potential mass mortality effect of sudden temperature increases on Saccharina latissima, and resilience as ‘High’. Sensitivity has been assessed as ‘Medium’.

None
High
High
High
Help
High
High
High
High
Help
Medium
High
High
High
Help
Temperature decrease (local) [Show more]

Temperature decrease (local)

Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail

Evidence

Kain (1964) stated that Laminaria hyperborea sporophyte growth and reproduction could occur within a temperature range of 0-20°C. Upper and lower lethal temperatures have been estimated at between 1-2°C above or below the extremes of these ranges (Birkett et al., 1988). Saccharina lattissima has a lower temperature threshold for sporophyte growth at 0°C (Lüning, 1990). Subtidal red algae can survive at temperatures between -2 °C and 18-23 °C (Lüning, 1990; Kain & Norton, 1990).

Echinus esculentus has been recorded from the Murmansk Coast, Russia (Hansson, 1998). Due to the high latitude at which Echinus esculentus can occur it is unlikely to be affected at the pressure benchmark. 

Sensitivity assessment. Echinus esculentus, Laminaria hyperborea and Saccharina latissima have northern distributions (Birkett et al., 1998; Hansson, 1998). An acute or long-term decrease in temperature within the UK, at the benchmark level, is not likely to have any dramatic effect on biotope structure. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not sensitive’.

High
High
High
High
Help
High
High
High
High
Help
Not sensitive
High
High
High
Help
Salinity increase (local) [Show more]

Salinity increase (local)

Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Lüning (1990) suggest that ‘kelps’ are stenohaline, their general tolerance to salinity as a phenotypic group covering 16-50 psu over a 24 hr period. Optimal growth probably occurs between 30-35 psu and growth rates are likely to be affected by periodic salinity stress. Birkett et al. (1998) suggested that long-term increases in salinity may affect Laminaria hyperborea growth and may result in loss of affected kelp, and therefore loss of the biotope.

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu . Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at approx.. 30% of control. After 5 days at 5 psu Saccharina latissima specimens became bleached and showed signs of severe damage. The affect of long-term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted on Saccharina latissima from the Arctic, and the authors suggest that at extremely low water temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes more effectively and quicker.

Echinoderms are generally stenohaline and possess no osmoregulatory organ (Boolootian, 1966). Therefore an increase in salinity may cause Echinus esculentus mortality.

Sensitivity assessment. The evidence suggests that Saccharina latissima can tolerate exposure to hypersaline conditions of ≥40‰. However, optimal salinities for Laminaria hyperborea growth are assumed to be 30-35 psu. An increase in salinity may cause Echinus esculentus mortality. Resistance has been assessed as ‘Low’, resilience as ‘Medium’. The sensitivity of this biotope to an increase in salinity has been assessed as ‘Medium’.

Low
High
High
High
Help
Medium
High
Low
High
Help
Medium
High
Low
High
Help
Salinity decrease (local) [Show more]

Salinity decrease (local)

Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Lüning (1990) suggest that ‘kelps’ are stenohaline, their general tolerance to salinity as a phenotypic group covering 16 - 50 psu over a 24 hr period. Optimal growth probably occurs between 30-35 psu and growth rates are likely to be affected by periodic salinity stress. Birkett et al,. (1998) suggest that long-term changes in salinity may result in loss of affected kelp. Hopkin & Kain (1978) tested Laminaria hyperborea sporophyte growth at various low salinity treatments. The results showed that Laminaria hyperborea sporophytes could grow ‘normally’ at 19 psu, growth was reduced at 16 psu and did not grow at 7 psu.

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu . Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at approx. 30% of control. After 5 days at 5 psu Saccharina latissima specimens became bleached and showed signs of severe damage. The affect of long-term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted on Saccharina latissima from the Arctic, and the authors suggest that at extremely low water temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes more effectively and quicker.

Echinoderms are generally unable to tolerate low salinity (stenohaline) and possess no osmoregulatory organ (Boolootian, 1966). At low salinity urchins gain weight, and the epidermis loses its pigment as patches are destroyed; prolonged exposure is fatal. However, within Echinus esculentus there is some evidence to suggest intracellular regulation of osmotic pressure due to increased amino acid concentrations. Furthermore as highlighted the Marine Nature Conservation Review (MNCR) records of 23rd Oct 2014 show Echinus esculentus is found within a number of variable and reduced salinity biotopes, e.g. IR.LIR.KVS.SlatPsaVS.

Sensitivity assessment. A decrease in one MNCR salinity scale from ‘Full Salinity’ (30-40psu) to ‘Reduced Salinity’ (18-30 psu) may result in a decrease of Laminaria hyperborea sporophyte. Resistance has been assessed as ‘Low’ and resilience as ‘Medium’. Therefore, sensitivity of this biotope to a decrease in salinity has been assessed as ‘Medium’.

Low
High
High
High
Help
Medium
High
Low
High
Help
Medium
High
Low
High
Help
Water flow (tidal current) changes (local) [Show more]

Water flow (tidal current) changes (local)

Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail

Evidence

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites, the first had maximal water velocities of 0.3m/sec and the second 0.1m/sec. At site 1 Saccharina latissima had significantly larger biomass than at site 2 (16 kg /m to 12 kg /m respectively). Peteiro & Freire (2013) suggested that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard & Mann (1979) found Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1 m/sec) when compared to weak tidal streams (<0.5m/sec). Despite the results published in Gerard & Mann (1979) Saccharina latissima can characterize or be a dominant in the tide swept biotopes IR.MIR.KT.XKTX & IR.MIR.KT.SlatT, which have been recorded from very strong (>3 m/sec) to moderately strong tidal streams (≤1 m/sec) (Connor et al., 2004), indicating Saccharina latissima can tolerate greater tidal streams than <1 m/sec.

Kregting et al. (2013) measured Laminaria hyperborea blade growth and stipe elongation from an exposed and a sheltered site in Strangford Lough, Ireland, from March 2009-April 2010. Maximal significant wave height (Hm0) was 3.67 & 2m at the exposed and sheltered sites, and maximal water velocity (Velrms) was 0.6 & 0.3m/s at the exposed and sheltered sites respectively. Despite the differences in wave exposure and water velocity there was no significant difference in Laminaria hyperborea growth between the exposed and sheltered sites. Therefore water flow was found to have no significant effect on Laminaria hyperborea growth at the observed range of water velocities.

Echinus esculentus occurred in kelp beds on the west coast of Scotland in currents of about 0.5 m/sec. Outside the beds specimens were occasionally seen being rolled by the current (Comely & Ansell, 1988), which may have been up to 1.4 m/sec. Urchins are removed from the stipe of kelps by wave and current action. Echinus esculentus are also displaced by storm action. After disturbance Echinus esculentus migrates up the shore, an adaptation to being washed to deeper water by wave action (Lewis & Nichols, 1979). Therefore, increased water flow may remove the population from the affected area; probably to deeper water although individuals would probably not be killed in the process and could recolonize the area quickly.

Sensitivity assessment. IR.LIR.K.LhypSlat plus sub-biotopes are classed as low energy biotopes, found predominantly in weak tidal streams (<0.5 m/sec). Large scale changes tidal velocities (~>1 m/sec) may increase the predominance of tide swept biotopes (e.g. IR.MIR.KR.LhypT/X, IR.MIR.KT.XKTX or IR.MIR.KT.SlatT) and replace IR.LIR.K.LhypSlat. However, the available evidence suggests that a change in flow velocities of between 0.1-0.2 m/sec would have little effect. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.. 

High
Medium
High
High
Help
High
High
High
High
Help
Not sensitive
Medium
High
High
Help
Emergence regime changes [Show more]

Emergence regime changes

Benchmark.  1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail

Evidence

IR.LIR.K.LhypSlat plus associated sub-biotopes are recorded predominantly in the sublittoral. An increase in emergence will result in an increased risk of desiccation and mortality of the dominant kelp species (Laminaria hyperborea & Saccharina latissima) in shallow examples of the biotope. Removal of canopy forming kelps has also been shown to increase desiccation and mortality of the understorey macro-algae (Hawkins & Harkin, 1985). Several mobile species such as sea urchins, brittle stars and feather stars are likely to move away. However, providing that suitable substrata are present, the biotope is likely to re-establish further down the shore within a similar emergence regime to that which existed previously.

Sensitivity assessment. Resilience has been assessed as ‘Low’. Resistance as ‘Medium’. The sensitivity of this biotope to a change in emergence is considered as ‘Medium’.

Low
Low
NR
NR
Help
Medium
High
Low
High
Help
Medium
Low
NR
NR
Help
Wave exposure changes (local) [Show more]

Wave exposure changes (local)

Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail

Evidence

IR.LIR.K.LhypSlat represents an intermediate biotope between a suite of exposed-moderately wave exposed Laminaria hyperborea dominated biotopes and the Saccharina latissima characterized IR.LIR.K.Slat biotopes found in very wave sheltered environments (Connor et al., 2004). Large changes in local wave height may affect the proportion/dominance of Laminaria hyperborea and Saccharina latissima and change the biotope structure. Changes in local wave height also have the potential to increase urchin dislodgement from IR.LIR.K.LhypSlat.Gz, and potentially decrease urchin grazing.

Kregting et al. (2013) measured Laminaria hyperborea blade growth and stipe elongation from an exposed and a sheltered site in Strangford Lough, Ireland from March 2009-April 2010. Wave exposure was found to be between 1.1. to 1.6 times greater between the exposed and sheltered sites. Maximal significant wave height (Hm0) was 3.67 & 2 m at the exposed and sheltered sites. Maximal water velocity (Velrms) was 0.6 & 0.3 m/s at the exposed and sheltered sites. Despite the differences in wave exposure and water velocity there was no significant difference in Laminaria hyperborea growth between the exposed and sheltered site.

However, Pedersen et al. (2012) observed Laminaria hyperborea biomass, productivity and density increased with greater wave exposure.  At low wave exposure Laminaria hyperborea canopy forming plants were smaller, had lower densities and had higher mortality rates. At low wave exposure, high epiphytic loading on Laminaria hyperborea was suggested to impair photosynthesis, nutrient uptake, and increase the drag of the host Laminaria hyperborea during extreme storm events. The morphology of kelp stipe and blades vary in different water flows and wave exposures water flow. In wave exposed areas, for example, Laminaria hyperborea develops a long and flexible stipe and this is probably a functional adaptation to strong water movement (Sjøtun et al., 1998). In addition, the lamina becomes narrower and thinner in strong currents (Sjøtun & Fredriksen, 1995).

Saccharina latissima is rarely found at wave exposed sites (Birkett et al., 1998). Saccharina latissima, if present, develops a short thick stipe and a short, narrow and tightly wrinkled blade (Birkett et al., 1998).

Echinus esculentus occurred in kelp beds on the west coast of Scotland in currents of about 0.5 m/sec. Outside the beds specimens were occasionally seen being rolled by the current (Comely & Ansell, 1988), which may have been up to 1.4 m/sec. Urchins are removed from the stipe of kelps by wave and current action. Echinus esculentus are also displaced by storm action. After disturbance Echinus esculentus migrates up the shore, an adaptation to being washed to deeper water by wave action (Lewis & Nichols, 1979). Keith Hiscock (pers. comm.) reported Echinus esculentus occurred in significant numbers as shallow as 15m below low water at the extremely wave exposed site of Rockall, Scotland. Therefore, localised increases in wave height may remove the population from the affected area; probably to deeper water although individuals would probably not be killed in the process and could recolonize the area quickly.

Sensitivity assessment. Wave exposure is one of the principal defining features of kelp biotopes, and changes in wave exposure are likely to alter the relative abundance of the kelp species, grazing and understorey community, and hence, the biotope. However a change in near shore significant wave height of 3-5% is unlikely to have any significant effect. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not Sensitive’ at the benchmark level.

High
High
High
High
Help
High
High
High
High
Help
Not sensitive
High
High
High
Help

Chemical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Transition elements & organo-metal contamination [Show more]

Transition elements & organo-metal contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg > inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et a,. (1999) reported that Hg was very toxic to macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on Laminaria hyperborea gametophytes and sporophytes, including reduced growth and respiration. Sheppard et al., (1980) noted that increasing levels of heavy metal contamination along the west coast of Britain reduced species number and richness in holdfast fauna, except for suspension feeders which became increasingly dominant. Gastropods may be relatively tolerant of heavy metal pollution (Bryan, 1984). Echinus esculentus recruitment is likely to be impaired by heavy metal contamination due to the intolerance of its larvae. Echinus esculentus are long-lived and poor recruitment may not reduce grazing pressure in the short-term. Although macroalgae species may not be killed, except by high levels of contamination, reduced growth rates may impair the ability of the biotope to recover from other environmental disturbances.

Sporophytes of Saccharina latissima have a low intolerance to heavy metals, but the early life stages are more intolerant. The effects of copper, zinc and mercury on Saccharina latissima have been investigated by Thompson & Burrows (1984). They observed that the growth of sporophytes was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l. Zoospores were found to be more intolerant and significant reductions in survival rates were observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l. Little is known about the effects of heavy metals on echinoderms. Bryan (1984) reported that early work had shown that echinoderm larvae were intolerant of heavy metals, e.g. the intolerance of larvae of Paracentrotus lividus to copper (Cu) had been used to develop a water quality assessment. Kinne (1984) reported developmental disturbances in Echinus esculentus exposed to waters containing 25 µg / l of copper (Cu). Sea-urchins, especially the eggs and larvae, are used for toxicity testing and environmental monitoring (reviewed by Dinnel et al. 1988). Taken together with the findings of Gomez & Miguez-Rodriguez (1999) above it is likely that echinoderms are intolerant of heavy metal contamination.

Little is known about the effects of heavy metals on echinoderms. Bryan (1984) reported that early work had shown that echinoderm larvae were sensitive to heavy metals contamination, for example Migliaccio et al. (2014) reported exposure of Paracentrotus lividis larvae to increased levels of cadmium and manganese caused abnormal larval development and skeletal malformations. Kinne (1984) reported developmental disturbances in Echinus esculentus exposed to waters containing 25 µg / l of copper (Cu).

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Hydrocarbon & PAH contamination [Show more]

Hydrocarbon & PAH contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Laminaria hyperborea and Saccharina latissima fronds, being predominantly subtidal, would not come into contact with freshly released oil but only to sinking emulsified oil and oil adsorbed onto particles (Birkett et al., 1998). The mucilaginous slime layer coating of laminariales may protect them from smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp forests. Similarly, surveys of subtidal communities at a number sites between 1-22.5m below chart datum, including Laminaria hyperbora communities, showed no noticeable impacts of the Sea Empress oil spill and clean up (Rostron & Bunker, 1997). An assessment of holdfast fauna in Laminaria showed that although species richness and diversity decreased with increasing proximity to the Sea Empress oil spill, overall the holdfasts contained a reasonably rich and diverse fauna, even though oil was present in most samples (Sommerfield & Warwick, 1999). Laboratory studies of the effects of oil and dispersants on several red algae species, including Delesseria sanguinea (Grandy 1984; cited in Holt et al., 1995) concluded that they were all sensitive to oil/ dispersant mixtures, with little differences between adults, sporelings, diploid or haploid life stages. Holt et al. (1995) concluded that Delesseria sanguinea is probably generally sensitive of chemical contamination. Loss of red algae is likely to reduce the species richness and diversity of IR.LIR.K.LhypSlat.

Echinus esculentus is subtidal and unlikely to be directly exposed to oil spills. However, as with the ‘Prestige’ oil spill rough seas can cause mixing with the oil and the seawater, and therefore sub-tidal habitats can be affected by the oil spill. Castège et al., (2014) recorded the recovery of rocky shore communities following the Prestige oil spill which impacted the French Atlantic coast. Rough weather at the time of the spill increased mixing between the oil and seawater, causing sub-tidal communities/habitats to be affected. The urchin Echinus esculentus was reported absent after the oil spill however returned after 2-5 years. Large numbers of dead Echinus esculentus were found between 5.5 and 14.5 m in the vicinity of Sennen cove, presumably due to a combination of wave exposure and heavy spraying of dispersants following the ‘Torrey canyon’ oil spill (Smith 1968). Smith (1968) also demonstrated that 0.5 -1ppm of the detergent BP1002 resulted in developmental abnormalities in its echinopluteus larvae. Echinus esculentus populations in the vicinity of an oil terminal in A Coruna Bay, Spain, showed developmental abnormalities in the skeleton. The tissues contained high levels of aliphatic hydrocarbons, naphthalenes, pesticides and heavy metals (Zn, Hg, Cd, Pb, and Cu) (Gomez & Miguez-Rodriguez 1999).

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Synthetic compound contamination [Show more]

Synthetic compound contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be sensitive to antifouling compounds. Johansson (20090 exposed samples of Saccharina latissima to several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Although Laminaria hyperborea sporelings and gametophytes are intolerant of atrazine (and probably other herbicides) overall they may be relatively tolerant of synthetic chemicals (Holt et al., 1995; Johansson, 2009). Laminaria hyperborea survived within >55m from the acidified halogenated effluent discharge polluting Amlwch Bay, Anglesey, albeit at low density. These specimens were greater than 5 years of age, suggesting that spores and/or early stages were more intolerant (Hoare & Hiscock, 1974). Patella pellucida was excluded from Amlwch Bay by the pollution and the species richness of the holdfast fauna decreased with proximity to the effluent discharge; amphipods were particularly intolerant although polychaetes were the least affected (Hoare & Hiscock, 1974). The richness of epifauna/flora decreased near the source of the effluent and epiphytes were absent from Laminaria hyperborea stipes within Amlwch Bay. The red alga Phyllophora membranifolia was also tolerant of the effluent in Amlwch Bay.

Smith (1968) also noted that epiphytic and benthic red algae were intolerant of dispersant or oil contamination due to the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida, Gigartina pistillata and Phyllophora crispa from the sublittoral fringe. Delesseria sanguinea was probably to most intolerant since it was damaged at depths of 6m (Smith, 1968). Holt et al., (1995) suggested that Delesseria sanguinea is probably generally sensitive of chemical contamination. Although Laminaria hyperborea may be relatively insensitive to synthetic chemical pollution, evidence suggests that grazing gastropods, amphipods and red algae are sensitive. Loss of red algae is likely to reduce the species richness and diversity of the biotope and the understorey may become dominated by encrusting corallines; however, red algae are likely to recover relatively quickly.

Large numbers of dead Echinus esculentus were found between 5.5 and 14.5 m in the vicinity of Sennen, presumably due to a combination of wave exposure and heavy spraying of dispersants in that area following the Torrey Canyon oil spill (Smith 1968). Smith (1968) also demonstrated that 0.5 -1ppm of the detergent BP1002 resulted in developmental abnormalities in echinopluteus larvae of Echinus esculentus. Echinus esculentus populations in the vicinity of an oil terminal in A Coruna Bay, Spain, showed developmental abnormalities in the skeleton. The tissues contained high levels of aliphatic hydrocarbons, naphthalenes, pesticides and heavy metals (Zn, Hg, Cd, Pb, and Cu) (Gomez & Miguez-Rodriguez 1999).

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Radionuclide contamination [Show more]

Radionuclide contamination

Benchmark. An increase in 10µGy/h above background levels. Further detail

Evidence

No evidence

No evidence (NEv)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction of other substances [Show more]

Introduction of other substances

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
De-oxygenation [Show more]

De-oxygenation

Benchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail

Evidence

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the oxygen depletion is short-term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is expected if the environmental conditions are transient. If levels drop below 4 mg/l negative effects on these organisms can be expected with adverse effects occurring below 2 mg/l (Cole et al., 1999).

 

In general, respiration in most marine invertebrates do not appear to be significantly affected until extremely low concentrations are reached. For many benthic invertebrates this concentration is about 2 ml l-1, or even less (Herreid, 1980; Rosenberg et al., 1991; Diaz & Rosenberg, 1995).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration but not cause a loss of the macroalgae population directly. Resistance has been assessed as ‘High’, Resilience as ‘High’. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

High
Medium
Low
Low
Help
High
High
High
High
Help
Not sensitive
Medium
Low
Low
Help
Nutrient enrichment [Show more]

Nutrient enrichment

Benchmark. Compliance with WFD criteria for good status. Further detail

Evidence

This biotope is considered to be 'Not sensitive' at the pressure benchmark that assumes compliance with good status as defined by the WFD.

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reporteded Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment  works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Holt et al. (1995) suggest that Laminaria hyperborea may be tolerant of organic enrichment since healthy populations are found at ends of sub littoral untreated sewage outfalls in the Isle of Man. Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in abundance, primary biomass and Laminaria hyperborea stipe production but with concomitant decreases in species numbers and diversity (Fletcher, 1996). Increases in ephemeral and opportunistic algae are associated with reduced numbers of perennial macrophytes (Fletcher, 1996). Increased nutrients may also result in phytoplankton blooms that increase turbidity.

It was suggested by Comely & Ansell (1988) that Echinus esculentus could absorb dissolved organic material for the purposes of nutrition. Nutrient enrichment may encourage the growth of ephemeral and epiphytic algae and therefore increase sea-urchin food availability. Lawrence (1975) reported that sea urchins had persisted over 13 years on barren grounds near sewage outfalls, presumably feeding on dissolved organic material, detritus, plankton and microalgae, although individuals died at an early age. 

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not sensitive
NR
NR
NR
Help
Organic enrichment [Show more]

Organic enrichment

Benchmark. A deposit of 100 gC/m2/yr. Further detail

Evidence

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reporteded Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Norwegian Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment  works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Holt et al.(1995) suggest that Laminaria hyperborea may be tolerant of organic enrichment since healthy populations are found at ends of sublittoral untreated sewage outfalls in the Isle of Man. Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in abundance, primary biomass and Laminaria hyperborea stipe production but with concomitant decreases in species numbers and diversity (Fletcher, 1996).  Increases in ephemeral and opportunistic algae are associated with reduced numbers of perennial macrophytes (Fletcher, 1996).  Increased nutrients may also result in phytoplankton blooms that increase turbidity.

It was suggested by Comely & Ansell (1988) that Echinus esculentus could absorb dissolved organic material for the purposes of nutrition. Organic enrichment may encourage the growth of ephemeral and epiphytic algae and therefore increase sea-urchin food availability. Lawrence (1975) reported that sea urchins had persisted over 13 years on barren grounds near sewage outfalls, presumably feeding on dissolved organic material, detritus, plankton and microalgae, although individuals died at an early age.

Sensitivity assessment. Although nutrients may not affect kelps directly, indirect effects such as turbidity may significantly affect photosynthesis. Furthermore organic enrichment may denude the associated community. Resistance has therefore been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ’Low’.

Medium
High
High
High
Help
High
High
High
High
Help
Low
High
High
High
Help

Physical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Physical loss (to land or freshwater habitat) [Show more]

Physical loss (to land or freshwater habitat)

Benchmark. A permanent loss of existing saline habitat within the site. Further detail

Evidence

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is, therefore ‘High’. Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another seabed type) [Show more]

Physical change (to another seabed type)

Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail

Evidence

If rock substrata were replaced with sedimentary substrata this would represent a fundamental change in habitat type, which kelp species would not be able to tolerate (Birkett et al., 1998b). The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very Low’ or ‘None’. The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa is assessed as ‘High’.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another sediment type) [Show more]

Physical change (to another sediment type)

Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail

Evidence

Not relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Habitat structure changes - removal of substratum (extraction) [Show more]

Habitat structure changes - removal of substratum (extraction)

Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail

Evidence

Not relevant to hard substratum (rock) biotopes.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Abrasion / disturbance of the surface of the substratum or seabed [Show more]

Abrasion / disturbance of the surface of the substratum or seabed

Benchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

Low level disturbances (e.g. solitary anchors and scallop dredges) are unlikely to cause harm to the biotope as a whole, due to the impact’s small footprint.  Commericial Laminaria hyperborea trawling occurs in Norway. Please refer to resilience section for more detail however trawling typically removes all large canopy forming sporophytes (Christie et al., 1998). Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed. Thus evidence to assess the resistance of Saccharina latissima to in/direct harvesting or abrasion is limited.

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial Laminaria hyperborea trawling in south Norway. Within the study area trawling removed all large canopy-forming adult Laminaria hyperborea, however sub-canopy recruits were unaffected. Within 2-6years of harvesting a new canopy had formed 1m off the seabed. The associated holdfast communities recovered in 6 years however the epiphytic stipe community did not fully recover within the same time period. Christie et al., (1998) suggested that kelp habitats were relatively resistant to direct disturbance of Laminaria hyperborea canopy.

Species with fragile tests, such as Echinus esculentus were reported to suffer badly as a result of scallop or queen scallop dredging (Bradshaw et al., 2000; Hall-Spencer & Moore, 2000). Kaiser et al. (2000) reported that Echinus esculentus were less abundant in areas subject to high trawling disturbance in the Irish Sea. Jenkins et al. (2001) conducted experimental scallop trawling in the North Irish sea and recorded the damage caused to several conspicuous megafauna species, both when caught as bi-catch and when left on the seabed. The authors predicted 16.4% of Echinus esculentus were crushed/dead, 29.3% would have >50% spine loss/minor cracks, 1.1% would have <50% spine loss and the remaining 53.3% would be in good condition. Sea urchins can rapidly regenerate spines, e.g. Psammechinus miliaris were found to re-grow all spines within a period of 2 months (Hobson, 1930).  The trawling examples mentioned above were conducted on sedimentary habitats and thus the evidence is not directly relevant to the rock based biotopes- CR.MCR.EcCr.FaAlCr.Adig, CR.MCR.EcCr.FaAlCr.Pom & CR.MCR.EcCr.FaAlCr.Sec, however does indicate the likely effects of abrasion on Echinus esculentus.

Sensitivity assessment. Abrasion by passing trawls or harvesting of macroalgae is likely remove a large proportion of the kelp biomass and cause high Echinus esculentus mortality.  Resistance has been assessed as ‘Low’, resilience as ‘Medium’, and sensitivity as ‘Medium’.

Low
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Penetration or disturbance of the substratum subsurface [Show more]

Penetration or disturbance of the substratum subsurface

Benchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

Not Relevant to hard substratum (rock) biotopes

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Changes in suspended solids (water clarity) [Show more]

Changes in suspended solids (water clarity)

Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail

Evidence

Moore (1977) suggested that Echinus esculentus was unaffected by turbid conditions. Echinus esculentus is an important grazer of red macro-algae within CR.MCR.EcCr. Increased turbidity and resultant reduced light penetration is likely to negatively affect algal growth. However, Echinus esculentus can feed on alternative prey, detritus or dissolved organic material (Lawrence, 1975, Comely & Ansell, 1988). Suspended Particle Matter (SPM) concentration has a linear relationship with sub surface light attenuation (Kd) (Devlin et al., 2008). An increase in SPM results in a decrease in sub-surface light attenuation. Light availability and water turbidity are principal factors in determining depth range at which kelp can be found (Birkett et al., 1998). Light penetration influences the maximum depth at which kelp species can grow and it has been reported that laminarians grow at depths at which the light levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of laminarians therefore varies from 100 m in the Mediterranean to only 6-7m in the silt laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in light attenuation by suspended sediment (Lüning, 1990; Birkett et al. 1998).

Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water turbidity will likely affect the photosynthetic ability of Laminaria hyperborea and Saccharina latissima, decrease kelp abundance and density and increase the dominance of kelp park biotopes in shallow water (see sub biotope- IR.LIR.K.LhypSlat.Pk). Kain (1964) suggested that early Laminaria hyperborea gametophyte development could occur in the absence of light. Furthermore observations from south Norway found that a pool of Laminaria hyperborea recruits could persist growing beneath Laminaria hyperborea canopies for several years, indicating sporophytes growth can occur in light limited environments (Christie et al., 1998).

Sensitivity Assessment. An increase in water clarity from clear to intermediate (10-100mg/l) represent a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than 50% reduction in photosynthesis of Laminaria spp. Therefore the dominant kelp species will probably suffer a severe decline and resistance to this pressure is assessed as ‘None’.  Resilience is probably to this pressure is defined as ‘Medium’ at the benchmark. Hence, this biotope is regarded as having a sensitivity of ‘Medium ‘to this pressure.

None
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Smothering and siltation rate changes (light) [Show more]

Smothering and siltation rate changes (light)

Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Laminaria hyperborea or Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years-(Parke, 1948)), IR.LIR.K.LhypSlat is likely to be dependent on annual Saccharina latissima recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that kelp gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Comely & Ansell (1988) recorded large Echinus esculentus from kelp beds on the west coast of Scotland in which the substratum was seasonally covered with "high levels" of silt. This suggests that Echinus esculentus is unlikely to be killed by smothering, however, smaller specimens and juveniles may be less resistant. A layer of sediment may interfere with larval settlement.  If retained within the host biotope for extended periods a layer of 5cm of the sediment may negatively affect successive recruitment events.

If inundation is long lasting then the understorey flora may be adversely affected. If clearance of deposited sediment occurs rapidly then understorey communities are expected to recover quickly. In moderately exposed examples of IR.LIR.K.LhypSlat, deposited sediment is unlikely to remain for more than a few tidal cycles (due to water flow or wave action). In wave sheltered examples of IR.LIR.K.LhypSlat, sediment could remain and recovery rate would be related to sediment retention  but will probably be dissipated within a year.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Medium
Low
NR
NR
Help
High
High
Low
High
Help
Low
Low
Low
Low
Help
Smothering and siltation rate changes (heavy) [Show more]

Smothering and siltation rate changes (heavy)

Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Laminaria hyperborea or Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years-(Parke, 1948)), IR.LIR.K.LhypSlat is likely to be dependent on annual recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 30cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Comely & Ansell (1988) recorded large Echinus esculentus from kelp beds on the west coast of Scotland in which the substratum was seasonally covered with "high levels" of silt. This suggests that Echinus esculentus is unlikely to be killed by smothering, however, smaller specimens and juveniles may be less resistant. A layer of sediment may interfere with larval settlement.  If retained within the host biotope for extended periods a layer of 5cm of the sediment may negatively affect successive recruitment events.

If inundation is long lasting then the understorey flora may be adversely affected. If clearance of deposited sediment occurs rapidly then understorey communities are expected to recover quickly. In moderately exposed examples of IR.LIR.K.LhypSlat, deposited sediment is unlikely to remain for more than a few tidal cycles (due to water flow or wave action). In wave sheltered examples of IR.LIR.K.LhypSlat sediment could remain and recovery rate would be related to sediment retention, which may take a few years to dissipate.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

Medium
Low
NR
NR
Help
Medium
High
Low
High
Help
Medium
Low
Low
Low
Help
Litter [Show more]

Litter

Benchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail

Evidence

Not assessed.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Electromagnetic changes [Show more]

Electromagnetic changes

Benchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail

Evidence

No Evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Underwater noise changes [Show more]

Underwater noise changes

Benchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail

Evidence

Not Relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Introduction of light or shading [Show more]

Introduction of light or shading

Benchmark. A change in incident light via anthropogenic means. Further detail

Evidence

There is no evidence to suggest that anthropogenic light sources would affect Laminaria hyperborea or habitats. Shading of the biotope (e.g. by construction of a pontoon, pier etc) could adversely affect the biotope in areas where the water clarity is also low, and tip the balance to shade tolerant species, resulting in the loss of the biotope directly within the shaded area, or a reduction in laminarian abundance from forest to park type biotopes.

Sensitivity assessment. Resistance is probably 'Low', with a 'Medium' resilience and a sensitivity of 'Medium', albeit with 'low' confidence due to the lack of direct evidence. .

Low
Low
NR
NR
Help
Medium
Low
NR
NR
Help
Medium
Low
NR
NR
Help
Barrier to species movement [Show more]

Barrier to species movement

Benchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail

Evidence

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal of spores. But spore dispersal is not considered under the pressure definition and benchmark.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Death or injury by collision [Show more]

Death or injury by collision

Benchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail

Evidence

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Visual disturbance [Show more]

Visual disturbance

Benchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail

Evidence

Not Relevant.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help

Biological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Genetic modification & translocation of indigenous species [Show more]

Genetic modification & translocation of indigenous species

Benchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail

Evidence

Saccharina latissima has shown significant regional acclimation to environmental conditions. Gerard & Dubois (1988) found Saccharina latissima sporophytes which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. It is therefore possible that transplanted eco-types of Saccharina latissima may react differently to environmental conditions that differ from those of their origin. However, there is little evidence for translocation of Saccharina latissima over significant geographic distances. Nor is there any evidence regarding the genetic modification or effects of translocation of native kelp populations.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction or spread of invasive non-indigenous species [Show more]

Introduction or spread of invasive non-indigenous species

Benchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail

Evidence

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was first recorded in the UK, Hamble Estuary, in June 1994 (Fletcher & Manfredi, 1995) and has since spread to a number of British ports. Undaria pinnatifida is an annual species, sporophytes appear in Autumn and grow rapidly throughout winter and spring during which they can reach a length of 1.65m (Birket et al., 1998). Farrell & Fletcher (2006) suggested that native short lived species that occupy similar ecological niches to Undaria pinnatifida, such as Saccharina latissima are likely to be worst affected and out-competed by Undaria pinnatifida. Where present Undaria pinnatifida has also corresponded to a decline Laminaria hyperborea (Hieser et al., 2014).

In new Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete Undaria pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as noted by Heiser et al., (2014) did not occur in Plymouth sound, UK. It is unknown whether Undaria pinnatifida will out-compete native macroalgae in the UK. However, from 2003-2011 Undaria pinnatifida had spread throughout Plymouth sound, UK, becoming a visually dominant species at some locations within summer months (Hieser et al., 2014).

Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70 °C (see Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted by Fletcher & Farrell, (1999) once established Undaria pinadifida resists most attempts of long-term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely to occur.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very Low’. The sensitivity of this biotope to INIS is assessed as ‘High’.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Introduction of microbial pathogens [Show more]

Introduction of microbial pathogens

Benchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail

Evidence

Laminaria hyperborea and Saccharina latissima may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark spots to heavy deformations and completely crippled thalli (Peters & Scaffelke, 1996). Infection can reduce growth rates of host algae. Echinus esculentus is susceptible to 'Bald-sea-urchin disease', which causes lesions, loss of spines, tube feet, pedicellariae, destruction of the upper layer of skeletal tissue and death.  It is thought to be caused by the bacteria Vibrio anguillarum and Aeromonas salmonicida. Bald sea-urchin disease was recorded from Echinus esculentus on the Brittany Coast. Although associated with mass mortalities of Strongylocentrotus franciscanus in California and Paracentrotus lividus in the French Mediterranean it is not known if the disease induces mass mortality (Bower 1996). No evidence of mass mortalities of Echinus esculentus associated with disease have been recorded in Britain and Ireland.

Sensitivity assessment. Resistance to the pressure is considered ‘Medium’, and resilience ‘High’. The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘Low’.

Medium
Medium
High
Medium
Help
High
Low
NR
NR
Help
Low
Low
NR
NR
Help
Removal of target species [Show more]

Removal of target species

Benchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

Incidental/accidental removal of Laminaria hyperborea and Saccharina latissima is likely to cause similar effects to that of direct harvesting; as such the same evidence has been used for both pressure assessments. There has been recent commercial interest in Saccharina latissima as a consumable called ‘sea vegetable’’ (Birkett et al., 1998). Laminaria hyperborea is also extracted on a commercial scale in southern Norway, primarily for alginates (Werner & Kraan, 2004).

Commercial Laminaria hyperborea trawling occurs in Norway. Please refer to resilience section for more detail however trawling typically removes all large canopy forming sporophytes but sub-canopy sporophytes and understorey community remain intact (Christie et al., 1998). Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed. Thus evidence to assess the resistance of Saccharina latissima to in/direct harvesting or abrasion is limited.

The collection of Echinus esculentus for the curio trade was studied by Nichols (1984). He concluded that the majority of divers collected only large specimens that are seen quickly and often missed individuals covered by seaweed or under rocks, especially if small. As a result, a significant proportion of the population remains.

Sensitivity assessment. Commercial extraction removes all large canopy forming kelps (Laminaria hyperborea), but sub-canopy sporophytes and understorey community remain intact. Saccharina latissima can reportedly recover from disturbance and dominate the substrate within a couple of weeks, however Laminaria hyperborea may take up 2-6 years to fully recover, and the associated understorey community 7-10 years. Resistance has been assessed as ‘Low’, resilience as ‘Medium’ and sensitivity as ‘Medium’.

Low
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Removal of non-target species [Show more]

Removal of non-target species

Benchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

There has been recent commercial interest in Saccharina lattisma as a consumable called ‘sea vegetables’ (Birkett et al., 1998). Laminaria hyperborea is also extracted on a commercial scale in southern Norway, primarily for alagnate (Werner & Kraan, 2004).

Commercial Laminaria hyperborea trawling occurs in Norway. Please refer to resilience section for more detail however trawling typically removes all large canopy forming sporophytes but sub-canopy sporophytes and understorey community remain intact (Christie et al., 1998). Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed. Thus evidence to assess the resistance of Saccharina latissima to in/direct harvesting or abrasion is limited.

The collection of Echinus esculentus for the curio trade was studied by Nichols (1984). He concluded that the majority of divers collected only large specimens that are seen quickly and often missed individuals covered by seaweed or under rocks, especially if small. As a result, a significant proportion of the population remains.

An intermediate intolerance has been suggested to reflect the possibility that either of these two species may experience some loss.

Sensitivity assessment. Commercial extraction removes all large canopy forming kelps (Laminaria hyperborea), but sub-canopy sporophytes and understorey community remain intact. Saccharina latissima can reportedly recover from disturbance and dominate the substrate within a couple of weeks, however Laminaria hyperborea may take up 2-6 years to fully recover, and the associated understorey community 7-10 years. Resistance has been assessed as ‘None’, Resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

None
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help

Bibliography

  1. Andersen, G.S., Steen, H., Christie, H., Fredriksen, S. & Moy, F.E., 2011. Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: implications for forest recovery. Journal of Marine Biology, 2011, Article ID 690375, 8 pages.

  2. Bekkby, T. & Moy, F.E., 2011. Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuarine Coastal and Shelf Science, 95 (4), 477-483.

  3. Beszczynska-Möller, A., & Dye, S.R., 2013. ICES Report on Ocean Climate 2012. In ICES Cooperative Research Report, vol. 321 pp. 73.

  4. Birkett, D.A., Maggs, C.A. & Dring, M.J., 1998a. Maerl. an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Natura 2000 report prepared by Scottish Association of Marine Science (SAMS) for the UK Marine SACs Project., Scottish Association for Marine Science. (UK Marine SACs Project, vol V.). Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/publications.htm

  5. Bolton, J.J. & Lüning, K.A.F., 1982. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Marine Biology, 66, 89-94.

  6. Brodie J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C. & Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4 (13), 2787-2798. DOI  https://doi.org/10.1002/ece3.1105

  7. Burrows, M.T., Smale, D., O’Connor, N., Rein, H.V. & Moore, P., 2014. Marine Strategy Framework Directive Indicators for UK Kelp Habitats Part 1: Developing proposals for potential indicators. Joint Nature Conservation Comittee,  Peterborough. Report no. 525.

  8. Christie, H., Fredriksen, S. & Rinde, E., 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia, 375/376, 49-58.

  9. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), The Marine Habitat Classification for Britain and Ireland Version 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/

  10. Dieck, T.I., 1992. North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia, 31, 147-163.

  11. Farrell, P. & Fletcher, R., 2006. An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). Journal of Experimental Marine Biology and Ecology, 334 (2), 236-243.

  12. Fletcher, R. & Farrell, P., 1998. Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgolander Meeresuntersuchungen, 52 (3-4), 259-275.

  13. Fredriksen, S., Sjøtun, K., Lein, T.E. & Rueness, J., 1995. Spore dispersal in Laminaria hyperborea (Laminariales, Phaeophyceae). Sarsia, 80 (1), 47-53.

  14. Gerard, V.A. & Du Bois, K.R., 1988. Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Marine Biology, 97, 575-580.

  15. Handå, A., Forbord, S., Wang, X., Broch, O.J., Dahle, S.W., Storseth, T.R., Reitan, K.I., Olsen, Y. & Skjermo, J., 2013. Seasonal and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture, 414, 191-201.

  16. Hawkins, S.J. & Harkin, E., 1985. Preliminary canopy removal experiments in algal dominated communities low on the shore and in the shallow subtidal on the Isle of Man. Botanica Marina, 28, 223-30.

  17. Heiser, S., Hall-Spencer, J.M. & Hiscock, K., 2014. Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodiversity Records, 7, e93.

  18. Hopkin, R. & Kain, J.M., 1978. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuarine and Coastal Marine Science, 7, 531-553.

  19. JNCC (Joint Nature Conservation Committee), 2022.  The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/

  20. Jones, N.S. & Kain, J.M., 1967. Subtidal algal recolonisation following removal of Echinus. Helgolander Wissenschaftliche Meeresuntersuchungen, 15, 460-466.

  21. Kain, J.M., 1964. Aspects of the biology of Laminaria hyperborea III. Survival and growth of gametophytes. Journal of the Marine Biological Association of the United Kingdom, 44 (2), 415-433.

  22. Kain, J.M., 1967. Populations of Laminaria hyperborea at various latitudes. Helgolander Wissenschaftliche Meeresuntersuchungen, 15, 489-499.

  23. Kain, J.M., 1971a. Synopsis of biological data on Laminaria hyperborea. FAO Fisheries Synopsis, no. 87.

  24. Kain, J.M., 1975a. Algal recolonization of some cleared subtidal areas. Journal of Ecology, 63, 739-765.

  25. Kain, J.M., 1979. A view of the genus Laminaria. Oceanography and Marine Biology: an Annual Review, 17, 101-161.

  26. Kain, J.M., & Norton, T.A., 1990. Marine Ecology. In Biology of the Red Algae, (ed. K.M. Cole & Sheath, R.G.). Cambridge: Cambridge University Press.

  27. Karsten, U., 2007. Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research, 55 (4), 257-262.

  28. Kregting, L., Blight, A., Elsäßer, B. & Savidge, G., 2013. The influence of water motion on the growth rate of the kelp Laminaria hyperborea. Journal of Experimental Marine Biology and Ecology, 448, 337-345.

  29. Lang, C. & Mann, K., 1976. Changes in sea urchin populations after the destruction of kelp beds. Marine Biology, 36 (4), 321-326.

  30. Leinaas, H.P. & Christie, H., 1996. Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia, 105(4), 524-536.

  31. Lüning, K., 1990. Seaweeds: their environment, biogeography, and ecophysiology: John Wiley & Sons.

  32. Müller, R., Laepple, T., Bartsch, I. & Wiencke, C., 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 52 (6), 617-638.

  33. Moy, F., Alve, E., Bogen, J., Christie, H., Green, N., Helland, A., Steen, H., Skarbøvik, E. & Stålnacke, P., 2006. Sugar Kelp Project: Status Report No 1. SFT Report TA-2193/2006, NIVA Report 5265 (in Norwegian, with English Abstract), 36 pp.

  34. Moy, F.E. & Christie, H., 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Marine Biology Research, 8 (4), 309-321.

  35. NBN, 2015. National Biodiversity Network 2015(20/05/2015). https://data.nbn.org.uk/

  36. Norderhaug, K.M. & Christie, H.C., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research, 5 (6), 515-528.

  37. Parke, M., 1948. Studies on British Laminariaceae. I. Growth in Laminaria saccharina (L.) Lamour. Journal of the Marine Biological Association of the United Kingdom, 27, 651-709.

  38. Peteiro, C. & Freire, O., 2013. Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. Journal of Applied Phycology, 25(1), 205-213.

  39. Rinde, E. & Sjøtun, K., 2005. Demographic variation in the kelp Laminaria hyperborea along a latitudinal gradient. Marine Biology, 146 (6), 1051-1062.

  40. Sjøtun, K. & Fredriksen, S., 1995. Growth allocation in Laminaria hyperborea (Laminariales, Phaeophyceae) in relation to age and wave exposure. Marine Ecology Progress Series, 126, 213-222.

  41. Sjøtun, K., 1993. Seasonal lamina growth in two age groups of Laminaria saccharina (L.) Lamour. in Western Norway. Botanica Marina, 36, 433-441.

  42. Sjøtun, K., Fredriksen, S. & Rueness, J., 1998. Effect of canopy biomass and wave exposure on growth in Laminaria hyperborea (Laminariaceae: Phaeophyta). European Journal of Phycology, 33, 337-343.

  43. Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. & Hawkins, S.J., 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and evolution, 3 (11), 4016-4038.

  44. Smale, D.A., Wernberg, T., Yunnie, A.L. & Vance, T., 2014. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine ecology.

  45. Staehr, P.A. & Wernberg, T., 2009. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. Journal of Phycology, 45, 91-99.

  46. Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J., 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental conservation, 29 (04), 436-459.

  47. Steneck, R.S., Vavrinec, J. & Leland, A.V., 2004. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems, 7 (4), 323-332.

  48. Svendsen, P., 1972. Some observations on commercial harvesting and regrowth of Laminaria hyperborea. Fisken og Havet, 2, 33-45.

  49. Thompson, G.A. & Schiel, D.R., 2012. Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Marine Ecology, Progress Series, 468, 95-105.

  50. Wotton, D.M., O'Brien, C., Stuart, M.D. & Fergus, D.J., 2004. Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, 49 (9), 844-849.

Citation

This review can be cited as:

Stamp, T.E. 2015. Grazed, mixed Laminaria hyperborea and Saccharina latissima on sheltered infralittoral rock. In Tyler-Walters H. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 09-10-2024]. Available from: https://www.marlin.ac.uk/habitat/detail/1058

 Download PDF version


Last Updated: 16/12/2015