MarLIN

information on the biology of species and the ecology of habitats found around the coasts and seas of the British Isles

Squat lobster assemblage on Atlantic upper bathyal coarse sediment (Lophelia rubble )

Summary

UK and Ireland classification

UK and Ireland classification

Description

This biotope describes the fringing rubble apron of cold water coral mounds or accumulations of gravel size Lophelia pertusa skeleton. Freiwald et al. (2004) list those species occurring within this zone on cold water coral reefs. The same assemblage was recorded in the Atlantic mid bathyal but associated species are likely to vary with depth. (Information from JNCC, 2015).

Depth range

200-600 m

Additional information

-

Listed By

- none -

Further information sources

Search on:

Sensitivity reviewHow is sensitivity assessed?

Sensitivity characteristics of the habitat and relevant characteristic species

Squat lobster assemblages occur in both the Atlantic upper bathyal and mid-bathyal on coarse sediment made up of Lophelia pertusa rubble.  The sensitivity of these squat lobster dominated biotopes is therefore assessed as a group, on the assumption that their sensitivity is very similar in terms of substratum and functional group present. Any differences in species or biotope response to pressures are highlighted.

The predominant species for the biotopes is Munida sp., however the Lophelia pertusa rubble also forms an important physical element to the biotopes. Loss of this species and/or the Lophelia pertusa rubble may result in loss or degradation of the biotopes, therefore, the sensitivities of the biotopes are dependent on the sensitivity of Munida sp. and the associated Lophelia pertusa rubble.

Other species present in the assemblages can include Porifera (massive lobose or encrusting), Serpulidae, the spoonworm Bonella viridis, Actiniaria (sediment dwelling and other indet.), Ophiuroidea indet., Bathynectes, Cidaris sp., Brachiopoda indet. These additional species are not specific to the biotopes however and are therefore not considered significant to the assessment of sensitivity. In addition to Lophelia pertusa, Madrepora oculata may also be present as rubble. As these are both suitable proxy species for each other, evidence has been included for both, but the assessment of Madrepora oculata specifically has not been deemed necessary. More information on these additional species can be found in other biotope assessments available on this website. Furthermore, the presence of these other species is not essential for the classification of the biotopes.

Resilience and recovery rates of habitat

Squat lobster assemblages occur in both the Atlantic upper bathyal and mid-bathyal on coarse sediment made up of Lophelia pertusa rubble.  The sensitivity of these squat lobster dominated biotopes is therefore assessed as a group, on the assumption that their sensitivity is very similar in terms of substratum and functional group present. Any differences in species or biotope response to pressures are highlighted. The predominant species for the biotopes is Munida sp., however the Lophelia pertusa rubble also forms an important physical element to the biotopes. Loss of this species and/or the Lophelia pertusa rubble may result in loss or degradation of the biotopes, therefore, the sensitivities of the biotopes are dependent on the sensitivity of Munida sp. and the associated Lophelia pertusa rubble.

Other species present in the assemblages can include Porifera (massive lobose or encrusting), Serpulidae, the spoonworm Bonella viridis, Actiniaria (sediment dwelling and other indet.), Ophiuroidea indet., Bathynectes, Cidaris sp., Brachiopoda indet. These additional species are not specific to the biotopes however and are therefore not considered significant to the assessment of sensitivity. In addition to Lophelia pertusa, Madrepora oculata may also be present as rubble. As these are both suitable proxy species for each other, evidence has been included for both, but the assessment of Madrepora oculata specifically has not been deemed necessary. More information on these additional species can be found in other biotope assessments available on this website. Furthermore, the presence of these other species is not essential for the classification of the biotopes.

Squat lobsters are found in every major ocean basin worldwide but are absent from the very cold polar regions in the south and north (Baeza, 2011). Most species of Munida are from shelf and slope depths (Baba et al., 2008) and live on muddy and shell-sand grounds (Petrić et al., 2010). However, there is limited evidence on their life history, behaviour and ecology (Baeza, 2011). Four species of Munida were found by Hartnoll et al., 1992 to occur in the North-East Atlantic, specifically from the Porcupine Seabight, occurring from the continental shelf to abyssal plain: Munida rugosa (down to ~300m), Munida sarsi (~200-800m), M. tenuimana (~800-1400m), and M. microphthalma (mid-slope). However, only 2 specimens of M. microphthalma were identified in the Porcupine Seabight (Hartnoll et al., 1992). Where possible, evidence for this assessment has focused on M. rugosa, M. sarsi and M. tenuimana, however, in some cases evidence from species known to occur outside of North-East Atlantic has been used in the absence of more geographically-relevant evidence. The lower confidence due to the consideration of species outside of the North-East Atlantic should be noted.

Munida spp. vary in their movements and behaviours with some species, such as Munida rugosa, more active during the day than others (Trenkel et al., 2007). Adults can move vertically in the water column (Tapella et al., 2002a). Hudson & Wigham (2003) found that Munida sarsi are scavengers and opportunistic predators and will eat many different food sources. Tapella et al. (2002b) also observed that Munida subrugosa (now thought to be the same species as Munida gregaria (Pérez-Barros et al., 2008; “WoRMS,” 2019), a species found in New Zealand, showed two different feeding habitats: either as a predator, eating crustaceans and macroalgae, or as a deposit feeder, feeding on sediment, foraminiferans, diatoms and particulate organic matter, depending on the habitat and depth they lived in. This suggests food sources are not a major driver of Munida spp. distribution.

Munida spp. commonly live in burrows (Trenkel et al., 2007), which could influence their resistance to physical pressures. M. tenuimana has been frequently found in association with, or burrowing in the osculum of, Pheronema carpenteri sponges (Hartnoll et al., 1992). Many squat lobsters have a symbiotic lifestyle, most commonly with soft and black corals (Baeza, 2011). Two species found in the North-East Atlantic, Munida rugosa and Munidopsis serricornis, are commonly associated with Lophelia pertusa (Baeza, 2011). This symbiotic relationship may be to protect against predation and/or for food acquisition (Baeza, 2011), and suggests that damage/removal of the associated host species (e.g. Lophelia pertusa) could also cause loss of the characterising species.

Munida spp. growth is undertaken through moulting. Growth rates differ between Munida spp, due to adaptations in their life-history traits and population dynamics, but they all have indeterminate growth, i.e. energy resource is allocated between growth and reproduction throughout their lives (Varisco & Vinuesa, 2015), although allocation for growth is reduced over time (Hartnoll, 1985). Moulting is commonly correlated to reproduction and Hartnoll et al., 1992 found that moulting of M. sarsi females peaked post-hatching. M. sarsi males did not show seasonality (Hartnoll et al., 1992), however M. gregaria were found to have lower moult (growth) increments in Autumn, which correlated with gonadal development (Varisco & Vinuesa, 2015). Temperature plays a key role in influencing growth of crustaceans such as Munida spp. as it affects the development of reproductive organs and the growth of the embryo, with warmer temperatures decreasing the intermoult duration (Vinuesa, 2007). Therefore, intermoult duration and moult increment can vary within species with wide latitudinal distributions, which in turn can influence the timing of sexual maturity (Varisco & Vinuesa, 2015). Size at sexual maturity has been estimated at ~10mm (carapace length (CL)) for M. sarsi females and ~11.5 mm for M. tenuimana females (Hartnoll et al., 1992).  

For M. gregaria, time of sexual maturity was found to vary between the first or second year after larval settlement, depending on geographical location (Varisco & Vinuesa, 2015). The authors further propose that post larval-settlement, females display either early maturity with low fecundity or delayed maturity with higher fecundity in the longer term (Varisco & Vinuesa, 2015). Hartnoll et al., 1992 suggest that M. sarsi females have an annual reproductive cycle, with a steady maturation of the ovaries from February, an increase in size from May-June, a laying season in November to December and hatching in March-April after around 4-5 months incubation. M. tenuimana was not found to have a clear reproductive cycle, but had a possible extended laying season from July to November, with hatching likely around March to July (Hartnoll et al., 1992). The authors further suggest that fecundity is higher in shallow-water species, and Petrić et al. (2010) draw a similar conclusion. During the reproductive season, the female will lay different clutches, with the first clutch including non-fertilized eggs which provide a chemical signal for the adult males in deep waters to come to mate (Vinuesa, 2007).

During the mating season, M. gregaria have been shown to migrate from the deep waters into the shallow waters (Vinuesa, 2007). Depending on the Munida spp, mating can start in May or June, with some Munida spp. having two egg-laying periods, firstly between June and August, and secondly in September or early October (Tapella et al., 2002a; Vinuesa, 2007). The breeding period is usually around 3 – 4 months (Gramitto & Froglia, 1998; Tapella et al., 2002a). The eggs from the first laying can hatch in late August to September and the second hatch in late November to December. The females can then either moult or mate again (Vinuesa, 2007). The larval time of the species Munida intermedia, a species found in the Mediterranean and Adriatic Seas, is ~1 month, with the average life-span found be no more than 4 years (Gramitto & Froglia, 1998).

Aggregation is seen in some of the Munida spp. which is usually affected by the environment. Munida gregaria has a juvenile pelagic phase, where it forms swarms. When the pelagic phase ends, and the adults become benthic and the swarms become aggregations. In particular, Munida intermedia and Munida sarsi forms compact aggregations with a high density of individuals (Poore et al., 2011).

Resilience assessment. Where resistance is ‘None’, resilience is assessed as ‘Very Low’ (>25 years). This is based on the understanding that loss of >75% of the habitat substratum would subsequently impact the symbiotic relationship of the characterising species with the underlying habitat (Baeza, 2011), and thus the species is likely to move to a new area. Time for recovery is based on the habitat substratum recovering. Where resistance is ‘Low-High’, resilience is assessed as ‘High’ as it is assumed that sufficient habitat would remain to support the squat lobster assemblage and Munida spp. has an annual reproductive cycle (Hartnoll et al., 1992) with sexual maturity occurring within the first or second year after larval settlement (Varisco & Vinuesa, 2015). An exception is made for permanent or ongoing (long-term) pressures where recovery is not possible as the pressure is irreversible, in which case resilience is assessed as ‘Very low’ by default. The confidences associated with this score are ‘Medium’ for the quality of evidence (proxies used and some expert judgement on recovery time), ‘Medium’ for applicability (studies vary in geographic location) and ‘High’ for the degree of concordance. 

Climate Change Pressures

Use / to open/close text displayedResistanceResilienceSensitivity
High High Not sensitive
Q: Medium
A: Low
C: Low
Q: High
A: High
C: High
Q: Medium
A: Medium
C: Medium

Bottom water temperatures in areas off the continental shelf are expected to increase by a nominal 1°C under both the middle and high emission scenario. Munida is the most cosmopolitan and diverse genus of the Galatheids from the genus Munida spp. occupying a wide bathymetric range from shallow water down to more than 3,000 m depth (Wehrtmann et al., 2010). Each species appears to occupy overlapping, and yet distinct, depth ranges (Wehrtmann et al., 2010).  

Of the four species found in the NE Atlantic, three occur in the Mediterranean as well. Munida rugosa is known to inhabit shallow waters down to depths of 300 m in the NE Atlantic (Hartnoll et al., 1992) and Mediterranean (Ateş et al., 2005), whilst the species Munida intermedia is a small species which occurs at depths of 120 -800 m, from the UK to West Africa in the Eastern Atlantic, including the Mediterranean and the Adriatic Seas (Gramitto & Froglia, 1998). Munida sarsi is the most northern of the NE Atlantic species, being distributed from Norway to the Bay of Biscay, and is found at depths of 200 – 1000 m, although its most common depth distribution is between 250 – 450 m (Rice & de Saint Laurent, 1986). Munida tenuimana has the deepest depth distribution, occurring from 250 m, although rarely seen above 550 m depth, down to 1775 m, and is distributed from Iceland and Norway, down to the coast of Spain, Portugal, and into the Mediterranean (Rice & de Saint Laurent, 1986)

Experimental exposure to a sharp 10°C increase in water temperatures from 5 to 15°C led to increased oxygen consumption, and week-long exposure resulted in mortality in the deep water squat lobsters; Munida rugosa and Munida sarsi (Zainal et al., 1992). This suggests these species are sensitive to large changes in temperature, although this experimental increase is significantly higher than the temperature increase expected for the bathyal by the end of this century, and hence isn’t taken into consideration in the scoring.

Sensitivity Assessment. Three of the four NE Atlantic species of Munida sp. occur in the Mediterranean, suggesting that they will be able to withstand a 1°C temperature increase, and Munida intermedia (which is found at its northern limit in the UK) may actually benefit. Munida sarsi is a cold water species and may be the species most affected by a temperature rise, although it does have a more southerly distribution than the UK (occurring in the Bay of Biscay), and is likely to be able to withstand a small temperature increase of 1°C. If the abundance of this species did decrease in response to this temperature rise, it is likely that one of the other species would increase their abundance accordingly. As such, under all three scenarios (middle and high emission and extreme scenarios) resistance of this biotope has been assessed as ‘High’ and their resilience assessed as ‘High’ so that this biotope is considered ‘Not sensitive’ to ocean warming at the benchmark level. 

High High Not sensitive
Q: Medium
A: Low
C: Low
Q: High
A: High
C: High
Q: Medium
A: Medium
C: Medium

Bottom water temperatures in areas off the continental shelf are expected to increase by a nominal 1°C under both the middle and high emission scenario. Munida is the most cosmopolitan and diverse genus of the Galatheids from the genus Munida spp. occupying a wide bathymetric range from shallow water down to more than 3,000 m depth (Wehrtmann et al., 2010). Each species appears to occupy overlapping, and yet distinct, depth ranges (Wehrtmann et al., 2010).  

Of the four species found in the NE Atlantic, three occur in the Mediterranean as well. Munida rugosa is known to inhabit shallow waters down to depths of 300 m in the NE Atlantic (Hartnoll et al., 1992) and Mediterranean (Ateş et al., 2005), whilst the species Munida intermedia is a small species which occurs at depths of 120 -800 m, from the UK to West Africa in the Eastern Atlantic, including the Mediterranean and the Adriatic Seas (Gramitto & Froglia, 1998). Munida sarsi is the most northern of the NE Atlantic species, being distributed from Norway to the Bay of Biscay, and is found at depths of 200 – 1000 m, although its most common depth distribution is between 250 – 450 m (Rice & de Saint Laurent, 1986). Munida tenuimana has the deepest depth distribution, occurring from 250 m, although rarely seen above 550 m depth, down to 1775 m, and is distributed from Iceland and Norway, down to the coast of Spain, Portugal, and into the Mediterranean (Rice & de Saint Laurent, 1986)

Experimental exposure to a sharp 10°C increase in water temperatures from 5 to 15°C led to increased oxygen consumption, and week-long exposure resulted in mortality in the deep water squat lobsters; Munida rugosa and Munida sarsi (Zainal et al., 1992). This suggests these species are sensitive to large changes in temperature, although this experimental increase is significantly higher than the temperature increase expected for the bathyal by the end of this century, and hence isn’t taken into consideration in the scoring.

Sensitivity Assessment. Three of the four NE Atlantic species of Munida sp. occur in the Mediterranean, suggesting that they will be able to withstand a 1°C temperature increase, and Munida intermedia (which is found at its northern limit in the UK) may actually benefit. Munida sarsi is a cold water species and may be the species most affected by a temperature rise, although it does have a more southerly distribution than the UK (occurring in the Bay of Biscay), and is likely to be able to withstand a small temperature increase of 1°C. If the abundance of this species did decrease in response to this temperature rise, it is likely that one of the other species would increase their abundance accordingly. As such, under all three scenarios (middle and high emission and extreme scenarios) resistance of this biotope has been assessed as ‘High’ and their resilience assessed as ‘High’ so that this biotope is considered ‘Not sensitive’ to ocean warming at the benchmark level. 

High High Not sensitive
Q: Medium
A: Low
C: Low
Q: High
A: High
C: High
Q: Medium
A: Medium
C: Medium

Bottom water temperatures in areas off the continental shelf are expected to increase by a nominal 1°C under both the middle and high emission scenario. Munida is the most cosmopolitan and diverse genus of the Galatheids from the genus Munida spp. occupying a wide bathymetric range from shallow water down to more than 3,000 m depth (Wehrtmann et al., 2010). Each species appears to occupy overlapping, and yet distinct, depth ranges (Wehrtmann et al., 2010).  

Of the four species found in the NE Atlantic, three occur in the Mediterranean as well. Munida rugosa is known to inhabit shallow waters down to depths of 300 m in the NE Atlantic (Hartnoll et al., 1992) and Mediterranean (Ateş et al., 2005), whilst the species Munida intermedia is a small species which occurs at depths of 120 -800 m, from the UK to West Africa in the Eastern Atlantic, including the Mediterranean and the Adriatic Seas (Gramitto & Froglia, 1998). Munida sarsi is the most northern of the NE Atlantic species, being distributed from Norway to the Bay of Biscay, and is found at depths of 200 – 1000 m, although its most common depth distribution is between 250 – 450 m (Rice & de Saint Laurent, 1986). Munida tenuimana has the deepest depth distribution, occurring from 250 m, although rarely seen above 550 m depth, down to 1775 m, and is distributed from Iceland and Norway, down to the coast of Spain, Portugal, and into the Mediterranean (Rice & de Saint Laurent, 1986)

Experimental exposure to a sharp 10°C increase in water temperatures from 5 to 15°C led to increased oxygen consumption, and week-long exposure resulted in mortality in the deep water squat lobsters; Munida rugosa and Munida sarsi (Zainal et al., 1992). This suggests these species are sensitive to large changes in temperature, although this experimental increase is significantly higher than the temperature increase expected for the bathyal by the end of this century, and hence isn’t taken into consideration in the scoring.

Sensitivity Assessment. Three of the four NE Atlantic species of Munida sp. occur in the Mediterranean, suggesting that they will be able to withstand a 1°C temperature increase, and Munida intermedia (which is found at its northern limit in the UK) may actually benefit. Munida sarsi is a cold water species and may be the species most affected by a temperature rise, although it does have a more southerly distribution than the UK (occurring in the Bay of Biscay), and is likely to be able to withstand a small temperature increase of 1°C. If the abundance of this species did decrease in response to this temperature rise, it is likely that one of the other species would increase their abundance accordingly. As such, under all three scenarios (middle and high emission and extreme scenarios) resistance of this biotope has been assessed as ‘High’ and their resilience assessed as ‘High’ so that this biotope is considered ‘Not sensitive’ to ocean warming at the benchmark level. 

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Marine heatwaves caused by increased air-sea flux of heat are only expected to penetrate surface waters (≤ 50 m) (Cerrano et al., 2000, Garrabou et al., 2009; Dan Smale, pers. comms.) Therefore, sensitivity to marine heatwaves is probably ‘Not relevant’ in this bathyal habitat.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Marine heatwaves caused by increased air-sea flux of heat are only expected to penetrate surface waters (≤ 50 m) (Cerrano et al., 2000, Garrabou et al., 2009; Dan Smale, pers. comms.) Therefore, sensitivity to marine heatwaves is probably ‘Not relevant’ in this bathyal habitat.

Medium Very Low Medium
Q: Medium
A: Medium
C: Low
Q: High
A: High
C: High
Q: Medium
A: Medium
C: Low

The absorption of carbon dioxide from the atmosphere and the resultant decrease in pH leads to changes in the carbonate chemistry of the oceans; an increase in hydrogen ions and a decrease in carbonate ions, which are needed for calcification. When the aragonite saturation state falls below 1, shells, coral skeleton, and other aragonitic structures start to dissolve.  This results in the shoaling of the aragonite saturation horizon (ASH). The ASH is defined as the depth in the oceans at which aragonite saturation equals 1. Below this depth, the aragonite saturation state (ΩAr) will fall below 1, and dissolution of calcified structures that are not protected by living tissue (e.g. coral reef and fragments) may occur. Currently, the depth of the ASH in the North Atlantic is approximately 2000m (Jiang et al., 2015) but this depth is already 80-150 m shallower than the past two centuries (Chung et al., 2003, Feely et al., 2004). By the end of this century, the ASH is expected to reach depths of up to 400 m under the high emission scenario (RCP 8.5) and 600 m for the middle emission scenario (RCP 4.5) (Zheng & Long, 2014).

Little is known of the effects of ocean acidification on squat lobsters, although at a submarine canyon off the coast of Australia, Munidopsis sp. has been found living at depths of 1357 m, >300 m below the ASH (Trotter et al., 2019). Whilst this is the only literature which describes the depth of a squat lobster in relation to the aragonite saturation state, the fact that species from the genus Munida are found at depths of more than 3000 m suggests that this genus is likely to be robust to future ocean acidification, even if the ASH does rise to the upper bathyal.

The abundance of squat lobsters is most likely intrinsically linked to the heterogeneity of the coral rubble and gravel in which this group of animals resides within this biotope. Squat lobsters often have a symbiotic lifestyle with their habitat and two species are commonly associated with Lophelia pertusa reef and rubble; Munida rugosa and Munidopsis serricornis (Baeza, 2011). Habitat complexity mediates predator-prey interactions through the provision of refuges (Rogers et al., 2014), and there is a strong positive relationship between complexity and species density and biomass (Graham & Nash, 2013). For Lophelia pertusa, both areas of live coral and areas of coral rubble enhance species density, compared to areas with no coral framework (Jonsson et al., 2004).

In an experiment, Voight (2010) looked at the dissolution of dead Lophelia pertusa rubble fragments in response to different aragonite saturation states. After 50 days, minimal dissolution was seen at ΩAr 1.02, but dissolution became more apparent at ΩAr 0.71 – 0.55 (Voigt, 2010). Furthermore, Hennige et al. (2015) observed dissolution of the exposed skeleton at aragonite saturation states < 1 and found that Lophelia pertusa coral framework became 20-30% weaker at low pH, even before saturation state fell below 1 (ΩAr 1.19-1.09). Extensive coral graveyards have been observed below the aragonite saturation horizon in Australia, which are thought to have flourished during the last ice age 18 – 33 thousand years ago (Trotter et al., 2019), suggesting that aragonite undersaturation will not cause complete dissolution and total loss of habitat.

Sensitivity Assessment. As squat lobsters such as Munida sp. rely on coral rubble for provision of heterogeneous habitat, they are likely to be impacted by the dissolution of the rubble and simplification of the habitat. There is evidence that some squat lobsters, including species from the genus Munida, live at depths where the aragonite saturation state is < 1, and this genus is therefore expected to be tolerant to ocean acidification. Therefore, under the middle emission scenario (0.15 unit decrease in pH), the aragonite saturation horizon (ASH) is not expected to reach the upper bathyal (200-600 m) or the shelf seas (<200 m)  (Zheng & Long, 2014), and hence Lophelia pertusa rubble is not expected to suffer any dissolution. Therefore, resistance is assessed as ‘High’, resilience as ‘High’ and sensitivity is assessed as ‘Not sensitive’ at this benchmark.  Under the high emission scenario (0.35 unit decrease in pH), the ASH saturation state is predicted to rise to approximately 400 m, reaching the upper bathyal, and could lead to some dissolution of the coral rubble and a reduction in habitat structure, although it is likely that the squat lobsters themselves will be tolerant of this reduction in pH.  Therefore, resistance has been assessed as ‘Medium’ as it is assumed that sufficient habitat would remain to support the squat lobster assemblage.  Resilience has been assessed as ‘Very Low’ due to the long-term nature of ocean acidification, and, hence, sensitivity is assessed as ‘Medium’

High High Not sensitive
Q: Medium
A: Medium
C: Low
Q: High
A: High
C: High
Q: Medium
A: Medium
C: Low

The absorption of carbon dioxide from the atmosphere and the resultant decrease in pH leads to changes in the carbonate chemistry of the oceans; an increase in hydrogen ions and a decrease in carbonate ions, which are needed for calcification. When the aragonite saturation state falls below 1, shells, coral skeleton, and other aragonitic structures start to dissolve.  This results in the shoaling of the aragonite saturation horizon (ASH). The ASH is defined as the depth in the oceans at which aragonite saturation equals 1. Below this depth, the aragonite saturation state (ΩAr) will fall below 1, and dissolution of calcified structures that are not protected by living tissue (e.g. coral reef and fragments) may occur. Currently, the depth of the ASH in the North Atlantic is approximately 2000m (Jiang et al., 2015) but this depth is already 80-150 m shallower than the past two centuries (Chung et al., 2003, Feely et al., 2004). By the end of this century, the ASH is expected to reach depths of up to 400 m under the high emission scenario (RCP 8.5) and 600 m for the middle emission scenario (RCP 4.5) (Zheng & Long, 2014).

Little is known of the effects of ocean acidification on squat lobsters, although at a submarine canyon off the coast of Australia, Munidopsis sp. has been found living at depths of 1357 m, >300 m below the ASH (Trotter et al., 2019). Whilst this is the only literature which describes the depth of a squat lobster in relation to the aragonite saturation state, the fact that species from the genus Munida are found at depths of more than 3000 m suggests that this genus is likely to be robust to future ocean acidification, even if the ASH does rise to the upper bathyal.

The abundance of squat lobsters is most likely intrinsically linked to the heterogeneity of the coral rubble and gravel in which this group of animals resides within this biotope. Squat lobsters often have a symbiotic lifestyle with their habitat and two species are commonly associated with Lophelia pertusa reef and rubble; Munida rugosa and Munidopsis serricornis (Baeza, 2011). Habitat complexity mediates predator-prey interactions through the provision of refuges (Rogers et al., 2014), and there is a strong positive relationship between complexity and species density and biomass (Graham & Nash, 2013). For Lophelia pertusa, both areas of live coral and areas of coral rubble enhance species density, compared to areas with no coral framework (Jonsson et al., 2004).

In an experiment, Voight (2010) looked at the dissolution of dead Lophelia pertusa rubble fragments in response to different aragonite saturation states. After 50 days, minimal dissolution was seen at ΩAr 1.02, but dissolution became more apparent at ΩAr 0.71 – 0.55 (Voigt, 2010). Furthermore, Hennige et al. (2015) observed dissolution of the exposed skeleton at aragonite saturation states < 1 and found that Lophelia pertusa coral framework became 20-30% weaker at low pH, even before saturation state fell below 1 (ΩAr 1.19-1.09). Extensive coral graveyards have been observed below the aragonite saturation horizon in Australia, which are thought to have flourished during the last ice age 18 – 33 thousand years ago (Trotter et al., 2019), suggesting that aragonite undersaturation will not cause complete dissolution and total loss of habitat.

Sensitivity Assessment. As squat lobsters such as Munida sp. rely on coral rubble for provision of heterogeneous habitat, they are likely to be impacted by the dissolution of the rubble and simplification of the habitat. There is evidence that some squat lobsters, including species from the genus Munida, live at depths where the aragonite saturation state is < 1, and this genus is therefore expected to be tolerant to ocean acidification. Therefore, under the middle emission scenario (0.15 unit decrease in pH), the aragonite saturation horizon (ASH) is not expected to reach the upper bathyal (200-600 m) or the shelf seas (<200 m)  (Zheng & Long, 2014), and hence Lophelia pertusa rubble is not expected to suffer any dissolution. Therefore, resistance is assessed as ‘High’, resilience as ‘High’ and sensitivity is assessed as ‘Not sensitive’ at this benchmark.  Under the high emission scenario (0.35 unit decrease in pH), the ASH saturation state is predicted to rise to approximately 400 m, reaching the upper bathyal, and could lead to some dissolution of the coral rubble and a reduction in habitat structure, although it is likely that the squat lobsters themselves will be tolerant of this reduction in pH.  Therefore, resistance has been assessed as ‘Medium’ as it is assumed that sufficient habitat would remain to support the squat lobster assemblage.  Resilience has been assessed as ‘Very Low’ due to the long-term nature of ocean acidification, and, hence, sensitivity is assessed as ‘Medium’

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

At a depth of 200 – 600 m, these biotopes will not be affected by sea-level rise.  Therefore sensitivity to this climate change pressure is probably ‘Not relevant’ in this bathyal habitat.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

At a depth of 200 – 600 m, these biotopes will not be affected by sea-level rise.  Therefore sensitivity to this climate change pressure is probably ‘Not relevant’ in this bathyal habitat.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

At a depth of 200 – 600 m, these biotopes will not be affected by sea-level rise.  Therefore sensitivity to this climate change pressure is probably ‘Not relevant’ in this bathyal habitat.

Hydrological Pressures

Use / to open/close text displayedResistanceResilienceSensitivity
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed

Chemical Pressures

Use / to open/close text displayedResistanceResilienceSensitivity
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: 
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: 
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Physical Pressures

Use / to open/close text displayedResistanceResilienceSensitivity
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR

Biological Pressures

Use / to open/close text displayedResistanceResilienceSensitivity
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not relevant (NR)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed
Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Q: NR
A: NR
C: NR
Not assessed

Bibliography

  1. Ateş, A.S., İşmen, A., Özeki̇nci̇, U. & Yiǧin, C.Ç.ǧ.E.r., 2005. A New Record of Munida rugosa (J. C. Fabricius, 1775) (Decapoda, Anomura, Galatheidae) from the Eastern Aegean Sea, Turkey. Crustaceana, 78 (10), 1265-1267.

  2. Baba, K., Macpherson, E., Poore, G.C.B., Ahyong, S.T., Bermudez, A., Cabezas, P., Lin, C.-W., Nizinksi, M., Rodrigues, C., Schnabel, K.E., 2008. Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa 1905, 1–220
  3. Baeza, J.A., 2011. Squat Lobsters as symbionts and in chemo-autotrophic environments.  In Poore et al. (eds.). The Biology of Squat Lobsters, Melbourne and CRC Press: Boca Raton: CSIRO Publishing, pp. 249-270

  4. Bergmann, M. & Moore, P.G., 2001. Survival of decapod crustaceans discarded in the Nephrops fishery of the Clyde Sea area, Scotland. ICES Journal of Marine Science, 58, 163-171.

  5. Bergmann, M., Beare, D.J. & Moore, P.G., 2001. Damage sustained by epibentic invertebrates discarded in the Nephrops fishery of the Clyde Sea area, Scotland. Journal of Sea Research, 45, 105-118.

  6. Bergmann, M., Taylor, A.C., Moore, P.G., 2001b. Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. Journal of Experimental Marine Biology and Ecology. 259 (2):215-229. . DOI https://doi.org/10.1016/s0022-0981(01)00231-3

  7. Bordbar, L., Catsiki, V.A., 2015. Bioaccumulation of metals in Munida rugosa collected from an area affected by dumped metalliferous slag (N. Evoikos Gulf, Greece). 11th Panhellenic Symposium on Oceanography and Fisheries, Mytilene, Lesvos island, Greece. 453-456

  8. Burd, B.J., 1988. Comparative gill characteristics of Munida quadrispina (Decapoda, Galatheidae) from different habitat oxygen conditions. Canadian Journal of Zoology 66, 2320–2323. https://doi.org/10.1139/z88-346

  9. Burd, B.J., Brinkhurst, R.O., 1984. The distribution of the galatheid crab Munidaquadrispina (Benedict 1902) in relation to oxygen concentrations in British Columbia fjords. Journal of Experimental Marine Biology and Ecology 81, 1–20.

  10. Carolina Romero, M., Tapella, F., Stevens, B. & Loren Buck, C., 2010. Effects of Reproductive Stage and Temperature on Rates of Oxygen Consumption in Paralithodes Platypus (Decapoda: Anomura). Journal of Crustacean Biology, 30 (3), 393-400. DOI https://doi.org/10.1651/09-3203.1

  11. Cerrano, C., Bavestrello, G., Bianchi, C., Cattaneo-Vietti, R., Bava, S., Morganti, C., Morri, C., Picco, P., Sara, G., Schiaparelli, S., Siccardi, A. & Sponga, F., 2000. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecology Letters, 3 (4), 284-293. DOI https://doi.org/10.1046/j.1461-0248.2000.00152.x

  12. Chu, J.W.F., Gale, K.S.P., 2017. Ecophysiological limits to aerobic metabolism in hypoxia determine epibenthic distributions and energy sequestration in the northeast Pacific ocean. Limnology and Oceanography 62, 59–74. https://doi.org/10.1002/lno.10370

  13. Chung, S.-N., Lee, K., Feely, R.A., Sabine, C.L., Millero, F.J., Wanninkhof, R., Bullister, J.L., Key, R.M. & Peng, T.-H., 2003. Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. Global Biogeochemical Cycles, 17 (4). DOI https://doi.org/10.1029/2002gb002001
  14. Comely, C.A., Ansell, A.D., 1989. The occurrence of black necrotic disease in crab species from the west of Scotland. Ophelia, 30, 95–112
  15. Diaz, R.J. & Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: an Annual Review, 33, 245-303.

  16. Dilmore, L.A., Hood, M.A., 1986. Vibrios of some deep-water invertebrates. FEMS Microbiology Letters 35, 221–224. https://doi.org/10.1111/j.1574-6968.1986.tb01531.x

  17. Favaro, B., Rutherford, D.T., Duff, S.D., Côté, I.M., 2010. Bycatch of rockfish and other species in British Columbia spot prawn traps: Preliminary assessment using research traps. Fisheries Research 102, 199–206. https://doi.org/10.1016/j.fishres.2009.11.013

  18. Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J. & Millero, F.J., 2004. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science, 305 (5682), 362-366. DOI https://doi.org/10.1126/science.1097329

  19. Freiwald, A., Fosså, J.H., Grehan, A., Koslow, T. & Roberts, J.M., 2004. Cold-water coral reefs. Out of sight - no longer out of mind. UNEP-WCMC, Cambridge, UK, 84 pp. Available from http://oceanrep.geomar.de/39256/1/Freiwald.pdf

  20. Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., Díaz, D., Harmelin, J.-G., Gambi, M.C. & Kersting, D., 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology, 15 (5), 1090-1103.

  21. Graham, N.A.J. & Nash, K.L., 2013. The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32 (2), 315-326. DOI https://doi.org/10.1007/s00338-012-0984-y

  22. Gramitto, M.E. & Froglia, C., 1998. Notes on the biology and growth of Munida intermedia (Anomura: Galatheidae) in the western Pomo pit (Adriatic Sea). Journal of Natural History, 32 (10-11), 1553-1566. DOI https://doi.org/10.1080/00222939800771091

  23. Hartnoll, R.G., 1985. Growth, sexual maturity and reproductive output. Crustacean issues, 3, 101-128.

  24. Hartnoll, R.G., Rice, A.L. & Attrill, M.J., 1992. Aspects of the biology of the galatheid genus Munida (Crustacea, Decapoda) from the porcupine seabight, Northeast Atlantic. Sarsia, 76 (4), 231-246. DOIhttps://doi.org/10.1080/00364827.1992.10413479

  25. Hartnoll, R.G., Rice, A.L. & Attrill, M.J., 1992. Aspects of the biology of the galatheid genus Munida (Crustacea, Decapoda) from the porcupine seabight, Northeast Atlantic. Sarsia, 76 (4), 231-246. DOIhttps://doi.org/10.1080/00364827.1992.10413479

  26. Hennige, S.J., Wicks, L.C., Kamenos, N.A., Perna, G., Findlay, H.S. & Roberts, J.M., 2015. Hidden impacts of ocean acidification to live and dead coral framework. Proceedings of the Royal Society B: Biological Sciences, 282 (1813), 20150990. DOI https://doi.org/10.1098/rspb.2015.0990

  27. Hudson, I.R., Wigham, B.D., 2003. In situ observations of predatory feeding behaviour of the galatheid squat lobster Munida sarsi (Huus, 1935) using a remotely operated vehicle Journal of the Marine Biological Association of the United Kingdom, 83 (3), 463-464. DOI https://doi.org/0.1017/S0025315403007343h

  28. Jiang, L.-Q., Feely, R.A., Carter, B.R., Greeley, D.J., Gledhill, D.K. & Arzayus, K.M., 2015. Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochemical Cycles, 29 (10), 1656-1673. DOI https://doi.org/10.1002/2015gb005198
  29. JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/

  30. Jones, D.O.B., Wigham, B.D., Hudson, I.R., Bett, B.J., 2007. Anthropogenic disturbance of deep-sea megabenthic assemblages: a study with remotely operated vehicles in the Faroe-Shetland Channel, NE Atlantic. Marine Biology 151, 1731–1741. https://doi.org/10.1007/s00227-007-0606-3

  31. Jonsson, L.G., Nilsson, P.G., Floruta, F. & Lundaelv, T., 2004. Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Marine Ecology Progress Series, 284, 163-171.

  32. Karas, P., Gorny, M., Alarcón-Muñoz, R., 2007. Experimental studies on the feeding ecology of Munida subrugosa (White, 1847)(Decapoda: Anomura: Galatheidae) from the Magellan region, southern Chile. Scientia Marina 71, 187–190.

  33. Kilgour, M.J. & Shirley, T.C., 2008. Bathymetric and Spatial Distribution of Decapod Crustaceans on Deep-Water Shipwrecks in the Gulf of Mexico. Bulletin of Marine Science, 82 (3), 333-344.

  34. Parker, J. F., Wuttig, K., Taras, B. 2004. Abundance and age and length composition of Arctic grayling in the Goodpaster River in 2004. Fishery data Series No. 07-73. Alaska Dept. of Fish and Game

  35. Petrić, M., Ferri, J., Mladineo, I., 2010. Growth and reproduction of Munida rutllanti (Decapoda: Anomura: Galatheidae) and impact of parasitism by Pleurocrypta sp. (Isopoda: Bopyridae) in the Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom. 90, 1395–1404. DOI https://doi.org/10.1017/S0025315409991615

  36. Poore, G., Ahyong, S., Taylor, J., 2011. The Biology of Squat Lobsters. Melbourne and CRC Press: Boca Raton: CSIRO Publishing

  37. Rice, A.L. & de Saint Laurent, M., 1986. The nomenclature and diagnostic characters of four north-eastern Atlantic species of the genus Munida Leach: M. rugosa (Fabricius), M. tenuimana G. O. Sars, M. intermedia A. Milne Edwards and Bouvier, and M. sarsi Huus (crustacea, Decapoda, Galatheidae). Journal of Natural History, 20 (1), 143-163. DOI https://doi.org/10.1080/00222938600770131

  38. Rogers, A., Blanchard, Julia L. & Mumby, Peter J., 2014. Vulnerability of Coral Reef Fisheries to a Loss of Structural Complexity. Current Biology, 24 (9), 1000-1005. DOI https://doi.org/10.1016/j.cub.2014.03.026

  39. Tapella, F., Lovrich, G., Romero, M., & Thatje, S. 2002. Reproductive biology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom, 82(4), 589-595. doi:https://doi.org/10.1017/S0025315402005921
  40. Tapella, F., Lovrich, G., Romero, M., & Thatje, S. 2002. Reproductive biology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom, 82(4), 589-595. doi:https://doi.org/10.1017/S0025315402005921
  41. Trenkel, V.M., Le Loc’h, F., Rochet, M.-J., 2007. Small-scale spatial and temporal interactions among benthic crustaceans and one fish species in the Bay of Biscay. Marine Biology 151, 2207–2215. https://doi.org/10.1007/s00227-007-0655-7

  42. Trotter, J.A., Pattiaratchi, C., Montagna, P., Taviani, M., Falter, J., Thresher, R., Hosie, A., Haig, D., Foglini, F., Hua, Q. & McCulloch, M.T., 2019. First ROV Exploration of the Perth Canyon: Canyon Setting, Faunal Observations, and Anthropogenic Impacts. Frontiers in Marine Science, 6 (173). DOI https://doi.org/10.3389/fmars.2019.00173

  43. Van den Beld, I.M.J., Guillaumont, B., Menot, L., Bayle, C., Arnaud-Haond, S. & Bourillet, J.-F., 2017. Marine litter in submarine canyons of the Bay of Biscay. Deep Sea Research Part II: Topical Studies in Oceanography, 145, 142-152. DOI https://doi.org/10.1016/j.dsr2.2016.04.013

  44. Varisco, M., Vinuesa, J.H., 2015. Growth and reproduction investment of the young of the year of the squat lobster Munida gregaria (Crustacea: Anomura) in the Patagonian coast. Scientia Marina 79, 345–353. https://doi.org/10.3989/scimar.04201.03A

  45. Vinuesa, J.H., 2007. Reproduction of Munida gregaria (Decapoda: Galatheidae) in San Jorge Gulf, Southwest Atlantic Ocean. Journal of Crustacean Biology. 27, 437–444. https://doi.org/10.1651/S-2787.1

  46. Voigt, J., 2010. Determination of the critical aragonite saturation state under which skeleton structures of the cold-water coral Lophelia pertusa begin to dissolve. Diplomarbeit, Institut für Biowissenschaften, Abteilung Meeresbiologie, Universität Rostock.

  47. Wehrtmann, I., Herrera-Correal, J., Vargas, R. & Hernáez, P., 2010. Squat lobsters (Decapoda: Anomura: Galatheidae) from deepwater Pacific Costa Rica: species diversity, spatial and bathymetric distribution. Nauplius, 18, 69-77.

  48. WoRMS [WWW Document], 2019. Munida gregaria Fabr. 1793. URL http://www.marinespecies.org/aphia.php?p=taxdetails&id=392346 (accessed 9.27.19)
  49. Zainal, K.A.Y., Taylor, A.C. & Atkinson, R.J.A., 1992. The effect of temperature and hypoxia on the respiratory physiology of the squat lobsters, Munida rugosa and Munida sarsi (anomura, galatheidae). Comparative Biochemistry and Physiology Part A: Physiology, 101 (3), 557-567. DOI https://doi.org/10.1016/0300-9629(92)90509-O

  50. Zheng, M.-D. & Long, C., 2014. Simulation of global ocean acidification and chemical habitats of shallow- and cold-water coral reefs. Advances in Climate Change Research, 5 (4), 189-196. DOI https://doi.org/10.1016/j.accre.2015.05.002

Citation

This review can be cited as:

Garrard, S.L., 2019. Squat lobster assemblage on Atlantic upper bathyal coarse sediment ([Lophelia] rubble ). In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 27-10-2020]. Available from: https://www.marlin.ac.uk/habitat/detail/1192

Last Updated: 19/11/2019