Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Angus Jackson | Refereed by | Paul Tranter |
Authority | Lacaze-Duthiers, 1897 | ||
Other common names | - | Synonyms | Leptopsammia microcardia Lacaze-Duthiers, 1897 |
The sunset cup coral is a bright yellow or orange stony coral. It has a tentacular polyp that emerges from a porous, calcareous skeleton. The skeleton may be short and cylindrical or tall and inversely conical. It is typically solitary but is rarely found in small groups forming 'pseudocolonies'. The tentacles are quite long and number around 96. When fully retracted the tentacles are barely visible inside the skeleton.
The synonym Leptopsammia microcardia was last used by Abel (1959) and Rutzler, 1966 despite the general recognition of their synonymy since 1954.
Phylum | Cnidaria | Sea anemones, corals, sea firs & jellyfish |
Class | Anthozoa | Sea anemones, soft & cup corals, sea pens & sea pansies |
Order | Scleractinia | |
Family | Dendrophylliidae | |
Genus | Leptopsammia | |
Authority | Lacaze-Duthiers, 1897 | |
Recent Synonyms | Leptopsammia microcardia Lacaze-Duthiers, 1897 |
Typical abundance | Low density | ||
Male size range | up to 60mm | ||
Male size at maturity | |||
Female size range | Small-medium(3-10cm) | ||
Female size at maturity | |||
Growth form | Cylindrical | ||
Growth rate | 1.3mm/year | ||
Body flexibility | |||
Mobility | |||
Characteristic feeding method | No information, Passive suspension feeder | ||
Diet/food source | |||
Typically feeds on | |||
Sociability | |||
Environmental position | Epifaunal | ||
Dependency | Independent. | ||
Supports | Substratum the barnacle Boscia anglica, the horseshoe worm Phoronis hippocrepia, the fan worm Potamilla reniformis and the bivalve Hiatella arctica. | ||
Is the species harmful? | No |
Younger individuals have a round calice which becomes elliptical with age. The skeleton is porous. It is not known whether the species is hermaphroditic or gonochoristic. The size range applies to maximum height of the corallum. The longest diameter of the calyx is 17 mm. Growth rate has been observed to be very slow in aquarium specimens which are little fed and in same seawater for several months (2 mm across calice after 18 months) but can be fast if fed and in continuous seawater supply (to 10 mm across calice after one year. (Paul Tranter, pers. comm.). Typically found as solitary individuals but may occur as several corallia from the same base forming 'pseudocolonies': during culture experiments, if any of the tissue overlying the skeletal column was lost, there would eventually appear, over a matter of weeks, one or more small polyps which would eventually form part of the 'parent' skeleton and give the impression of a naturally formed colony (Paul Tranter, pers. comm.). Leptopsammia pruvoti is known to have the ability to control and possibly 'farm' the bacterial content of its coelenteric cavity (Herndl & Velimirov, 1985). These bacteria could be used as an additional food source. The horseshoe worm Phoronis hippocrepia and the fan worm Potamilla reniformis bore into the base of the skeleton of Leptopsammia pruvoti and the bivalve Hiatella arctica further enlarges these boreholes. Once bored, the skeleton is weakened and corals may be easily detached.
Physiographic preferences | Open coast |
Biological zone preferences | Lower circalittoral, Lower infralittoral, Upper circalittoral |
Substratum / habitat preferences | Bedrock, Large to very large boulders, Small boulders |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.) |
Wave exposure preferences | Exposed, Moderately exposed, Sheltered |
Salinity preferences | Full (30-40 psu) |
Depth range | 10-40 |
Other preferences | No text entered |
Migration Pattern | Non-migratory / resident |
Reproductive type | Gonochoristic (dioecious) | |
Reproductive frequency | No information | |
Fecundity (number of eggs) | 11-100 | |
Generation time | Insufficient information | |
Age at maturity | Insufficient information | |
Season | July - September | |
Life span | Insufficient information |
Larval/propagule type | - |
Larval/juvenile development | Lecithotrophic |
Duration of larval stage | 1 day |
Larval dispersal potential | <10 m |
Larval settlement period | Insufficient information |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | Very low / none | Very High | High | |
This species is permanently attached to the substratum so substratum loss would cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
High | Very low / none | Very High | Moderate | |
This species is permanently attached to the substratum and would be unable to avoid or 'dig-out' from smothering. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
Intermediate | Very low / none | High | Moderate | |
This species is permanently attached to the substratum and would be unable to avoid changes in siltation. However, the species tends to inhabit caves or overhangs which are less likely to be exposed to suspended material settling out. The polyp will most likely 'inflate' with water to expand above the silt if briefly covered. Increased siltation may clog feeding apparatus and there would be an energetic cost to clearing this sediment. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
No information | ||||
High | Very low / none | Very High | High | |
The species is only found subtidally (typically 10-30 m) and the polyp is soft bodied. Exposure to desiccating influences would cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
High | Very High | High | ||
The species is only found subtidally (typically 10-30m) and the polyp is soft bodied. Emersion from the water would cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring. Recruitment from distant water bodies may occur every 25-30 years. Recovery will take a very long time or may not occur at all. | ||||
No information | ||||
Low | Very high | Very Low | Moderate | |
Decreases in flow rate are unlikely to have any effect as Leptopsammia pruvoti can be found in areas with negligible water flow. Increases in water flow rate may interfere with the ability to feed or to hold the tentacles out in the current. However, a thriving population has been found on the wave exposed west coast of Lundy. Reproduction may be restricted and body condition may be lost as a result of increases in water flow rate. On resumption of 'normal' water flow rates recovery will probably occur within a few months. | ||||
No information | ||||
Intermediate | High | Moderate | ||
Observations from aquaria suggest that the species is very tolerant to temperature increases, tolerating up to about 30 ° C for several days. Similarly, observations from aquaria suggest that, once established it survives in temperatures below its normal range. Leptopsammia pruvoti distribution extends south into the Mediterranean where water temperatures are considerably warmer than in the British Isles. However, the species is at the northern limit of its range and long term chronic decreases in temperature would probably cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | Low | |
Leptopsammia pruvoti tends to inhabit low light environments such as caves, crevices and overhangs. In the Mediterranean the species is found in very dark conditions (Riedl, 1966). If the presence of some light is of critical importance, increased light transmission may mean that (if recruitment occurs) the species can extend its depth range (In the clear waters of the western Mediterranean the lower depth limit is 40m as opposed to 30m elsewhere. | ||||
No information | ||||
Intermediate | High | Low | ||
The species inhabits a range of wave exposures from exposed to sheltered. Decreases in wave exposure may not have any effect on the species but increases in wave exposure may affect the ability to feed and extend tentacles. However, a thriving population has been found on the wave exposed west coast of Lundy. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | Moderate | |
This species probably has very limited facility for vibration detection and as such is unlikely to be sensitive to noise. | ||||
Tolerant | Not relevant | Not sensitive | High | |
This species has very limited ability to detect changes in light levels and no visual perception and as such is unlikely to be sensitive to visual disturbance. | ||||
High | Very High | Moderate | ||
The calcified skeleton of this species is brittle. Physical disturbance or abrasion would cause detachment and death. Gamete production, synchronous gamete production, or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment was not recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is likely but may also occur from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's (Keith Hiscock pers obs.). Recovery will take a very long time or may not occur at all. | ||||
High | Very High | High | ||
This species is permanently fixed to boulders or bedrock - displacement would certainly cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
Low | Very high | Very Low | Very low | |
Changes in nutrient concentration are unlikely to affect this species greatly unless there is a smothering effect through enhanced growth of ephemeral algae. High calcium levels may benefit skeleton construction. On removal of the factor, death of the algae etc and resumption of normal feeding, water flow etc, return to original condition should take only a short time. | ||||
High | Very High | Moderate | ||
The species is only found in fully saline environments and at depths unlikely to be affected by freshwater surface runoff (10-30m). Observations from aquaria suggest that these animals are quite tolerant to slight changes in salinity but reductions of one or two salinity bands are likely to cause death. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. | ||||
No information | ||||
Intermediate | High | Moderate | ||
Cole et al. (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2mg/l. A reduction in oxygen concentration may cause some individuals of a population to die although observations from aquaria suggest that these animals are quite hardy. Gamete production, synchronous gamete production or successful recruitment are very unpredictable and sporadic primarily due to unfavourable environmental conditions. Local recruitment has not been recorded at Lundy during more than 12 years of monitoring but occurred to a small extent in 1998. Local recruitment is most likely but may also be from distant water bodies perhaps every 25-30 years. There has been no observation of colonization of wrecks or new natural surfaces near to existing colonies such as the breakwater at Plymouth Sound constructed in the early 1800's. Recovery will take a very long time or may not occur at all. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
Not relevant | Not relevant | Not relevant | Moderate | |
It is extremely unlikely that Leptopsammia pruvoti would be extracted. The species is the subject of a UK Biodiversity Action Plan. | ||||
Not relevant | Not relevant | Not relevant | Low | |
Leptopsammia pruvoti has no known obligate relationships so removal of other species is unlikely to have any effect on the population. |
UK Biodiversity Action Plan Priority | |
Species of principal importance (England) | |
Features of Conservation Importance (England & Wales) |
National (GB) importance | Nationally rare | Global red list (IUCN) category | - |
Native | - | ||
Origin | - | Date Arrived | - |
Anonymous, 1999f. Sunset cup coral (Leptopsammia pruvoti). Species Action Plan. In UK Biodiversity Group. Tranche 2 Action Plans. English Nature for the UK Biodiversity Group, Peterborough., English Nature for the UK Biodiversity Group, Peterborough.
Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.
Herndl, G.J. & Velimirov, B., 1985. Bacteria in the coelenteron of Anthozoa: control of coelomic bacterial density by the coelenteric fluid. Journal of Experimental Marine Biology and Ecology, 93, 115-130.
Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]
Lacaze-Duthiers, H. de, 1897. Faune du Golfe du Lion.
Manuel, R.L., 1988. British Anthozoa. Synopses of the British Fauna (New Series) (ed. D.M. Kermack & R.S.K. Barnes). The Linnean Society of London [Synopses of the British Fauna No. 18.]. DOI https://doi.org/10.1002/iroh.19810660505
Riedl, R., 1966. Biologie der Meereshöhlen. Topographie, faunistik und okologie eines unterseeischen lebensraumes. Eine monographie. 636 pp. Berlin: Verlag Paul Parey.
Sanderson, W.G., 1996. Rare benthic marine flora and fauna in Great Britain: the development of criteria for assessment. Joint Nature Conservation Committee, Peterborough. JNCC Report, no. 240.
Zibrowius, H., 1980. Les scleractiniaires de la Mediterranee et de l'Atlantique nord oriental. Memoires de l'Institut Oceanograhique, Monaco. 11, 391 pp.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-06-07
This review can be cited as:
Last Updated: 17/04/2008