Ross worm (Sabellaria spinulosa)

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Researched byAngus Jackson & Dr Keith Hiscock Refereed byProf. Steve J. Hawkins
Authority(Leuckart, 1849)
Other common names- Synonyms-

Summary

Description

An occasionally gregarious segmented worm that builds tubes from sand or shell fragments. Found subtidally in exposed areas. Does not form reefs over most of its range being found mostly individually but may form thin crusts or large reefs up to several metres across and 60 cm high. Quite similar to Sabellaria alveolata.

Recorded distribution in Britain and Ireland

All British and Irish coasts

Global distribution

Arctic, North Sea, Channel, Atlantic

Habitat

Found on hard substrata on exposed, open coasts where sand is available for tube building. It is mainly subtidal but may be found in the low intertidal.

Depth range

-

Identifying features

  • Inhabits a tube with round straight opening made from coarse, cemented sand or shell grains.
  • Thorax with three pairs of flattened chaetal sheaths.
  • Opercular chaetae in middle row point distally.
  • Outer row chaetae taper with several serrations on either side.

Additional information

At low densities, the tubes are attached to the substratum along the entire length but at greater densities competition for space results in the tubes overlapping and may cause the tubes to be built outwards, away from the substratum.

Listed by

- none -

Further information sources

Search on:

NBN WoRMS

Biology review

Taxonomy

PhylumAnnelidaSegmented worms e.g. ragworms, tubeworms & fanworms
ClassPolychaetaBristleworms, e.g. ragworms, scaleworms, paddleworms, fanworms and tubeworms
OrderSabellida
FamilySabellariidae
GenusSabellaria
Authority(Leuckart, 1849)
Recent Synonyms

Biology

Typical abundanceHigh density
Male size range20 - 30mmMale size at maturity
Female size rangeSmall-medium(3-10cm)Female size at maturity
Growth formTubicolousGrowth rateField unresearched
Body flexibilityMobility
Characteristic feeding methodActive suspension feeder
Diet/food source
Typically feeds onPhytoplankton
Sociability Environmental positionEpifaunal
DependencyIndependent.
SupportsSubstratum

a variety of organisms. Forms a substratum for algae and shelter for small crabs etc. (particularly when forming reefs or crusts)

Is the species harmful?No

Biology information

Can be found in very high densities, for example when forming a reef. Typically found in lower densities as a crust or as individuals. At the Bristol Channel location studied by George & Warwick (1986), densities in excess of 4,000/m² for loosely aggregated Sabellaria spinulosa were recorded whilst the area sampled by Hiscock & Rostron (unpublished) on a level hard substratum had a single layer crust with 9,561 individual Sabellaria spinulosa in 1.4m². There has been considerable concern about decline in Sabellaria spinulosa reefs and shrimp fisheries have been implicated in the decline. However, Vorberg (2000) could find no damage caused after experiments with shrimp trawls in the Wadden Sea and suggests that declines might be more associated with changing patterns of currents perhaps associated with construction, dredging and dumping.

Habitat preferences

Physiographic preferencesOpen coast, Offshore seabed
Biological zone preferencesLower infralittoral, Upper infralittoral
Substratum / habitat preferencesBedrock, Cobbles, Large to very large boulders, Small boulders
Tidal strength preferencesModerately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.)
Wave exposure preferencesExposed, Moderately exposed, Very exposed
Salinity preferencesFull (30-40 psu)
Depth range
Other preferencesNo text entered
Migration PatternNon-migratory / resident

Habital Information

Often settles on Pecten maximus and Buccinum undatum and occasionally on Aequipecten opercularis. Has strong settlement preference for tubes or sites currently or previously used by the species.

Life history

Adult characteristics

Reproductive type Gonochoristic (dioecious) Reproductive frequency Annual protracted
Fecundity (number of eggs) No information Generation time Insufficient information
Age at maturity Season January - March
Life span 2-5 years

Larval characteristics

Larval/propagule type - Larval/juvenile development Planktotrophic
Duration of larval stage 1-2 months Larval dispersal potential Greater than 10 km
Larval settlement period March

Life history information

Wilson (1970b) stated that the larvae spend between six weeks and two months in the plankton. Reproductive seasonality is unclear but George & Warwick (1985) and Wilson (1970) have both reported larval settlement in March in the Bristol Channel and Plymouth areas respectively. Wilson (1970) found a spawning period from January to March in Plymouth. Possibly has similar lifespan to Sabellaria alveolata (up to 9 years). Fecundity and recruitment may be variable (Holt et al., 1998) but may be similar to Sabellaria alveolata.

Sensitivity reviewHow is sensitivity assessed?

Physical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
High High Moderate High
The species is fixed to the substratum so substratum removal will cause mortality. Recruitment rates are high and recovery could be quite rapid (see additional information). It is often one of the first species to settle on new substrata.
Low Immediate Not sensitive Moderate
Extrapolating from Sabellaria alveolata it is probable that Sabellaria spinulosa can tolerate smothering by sediment for up to several weeks. Feeding and growth will be curtailed. Depending on timing this may interfere with reproduction. Recovery would be almost immediate.
Low Immediate Not sensitive Moderate
Tube growth is dependent on the presence of suspended particles, hence increase in suspended sediment could facilitate tube construction and may result in increased populations. However, an increase in siltation may also clog feeding apparatus - assumed here. Recovery occurs when the population is able to recommence feeding and growing.
Intermediate High Low Moderate
Tube growth is dependent on the presence of suspended particles, hence a reduction in siltation may hinder tube construction and/or may favour other species to compete sucessfully with Sabellaria spinulosa. Overall, a decline in population density seems likely. Recovery would be high (see additional information).
Tolerant Not relevant Not sensitive Low
The species is sessile and typically subtidal but is also occasionally found intertidally and so can be exposed to drying influences. If exposed to the air the worm can retract into its tube and close the operculum over the entrance reducing evaporation.
Intermediate High Low Low
The species is sessile and typically subtidal but is also occasionally found in the low intertidal. This means the species can tolerate some emergence, however, increased emergence will reduce the amount of time available for feeding. This species is more subtidal than Sabellaria alveolata. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could be quite rapid, say a year, or take several years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Tolerant* Not relevant Not sensitive* High
The species is sessile and typically subtidal but is also occasionally found in the low intertidal. The species is likely to benefit from decrease in emergence.
Intermediate High Low Low
The species occurs in areas with high water flow so an increase in rate is likely to have little effect on attached individuals. However, Sabellaria spinulosa typically inhabits cobbles and pebbles that are likely to become mobile if water flow rate is increased and therefore result in scour and mortality of individuals. Not all individuals are likely to be killed and an intolerance of intermediate is suggested. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Intermediate High Low Moderate
The species inhabits areas with high water flow so an increase in rate is likely to have little effect. A reduction of water flow by two categories is likely to cause exposure to conditions outside the normal range for the species. This may be sufficient to reduce availability of suspended particles, hindering growth and repair and feeding. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Low High Low Very low
The species does appear to thrive in conditions of cold water (for instance, it extends into arctic areas) and long-term increase in temperature may have a negative effect so that populations do not thrive. The species is highly fecund and likely to recover quickly from short-term declines that might be due to increased temperatures (see additional information).
Tolerant Not relevant Not sensitive High
Sabellaria spinulosa did not appear to suffer mortality during the 1963-64 winter (Crisp, 1964). The species occurs north to the arctic and is therefore considered tolerant of decrease in temperature.
Tolerant Not relevant Not sensitive Low
Sabellaria spinulosa thrives in turbid water conditions and has no reliance on visual sense for feeding, reproducing etc.
Intermediate High Low Low
Decrease in turbidity may be sufficient to reduce availability of suspended particles, hindering growth, repair and feeding. Effects are likley to be sublethal in the short-term but may reduce viability of populations and result in decline if the turbidity decrease is chronic. The species is highly fecund and likely to recover quickly from short-term declines that might be due to increased temperatures (see additional information).
Intermediate High Low Moderate
Where the species exists as loose crusts, death may occur through break-up due to wave action. Increased wave action may also mobilize the pebble and gravel substrata on which Sabellaria spinulosa often occurs resulting in abrasion and mortality. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Intermediate High Low
Wave action may be required, in the absence of strong tidal flow, to suspend the coarse sand particles needed to build tubes. Reduced wave action may mean the population exists outside of its preferred conditions with insufficient water action to provide sand particles or food. Some reduction in the population therefore seems likely. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Tolerant Not relevant Not sensitive Low
The species is unlikely to respond to noise vibrations
Tolerant Not relevant Not sensitive Low
Most polychaetes have photoreceptors but the species is probably unable to resolve moving objects. The worms may retract into tube on disturbance. Whether this is through light detection or mechanical stimulus is uncertain.
Intermediate High Low Low
Extrapolating from Sabellaria alveolata it is probable that Sabellaria spinulosa is quite tolerant to abrasion resulting from trawling. The ability of Sabellaria alveolata to repair tubes is well developed (Cunningham et al., 1984; Vorberg, 2000). However, abrasion resulting from substratum (cobbles and pebbles) becoming mobile is likely to cause significant damage. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
High High Moderate Low
Worms are not able to rebuild tubes if removed from them (Wilson, 1929). High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).

Chemical pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
Tolerant* Not relevant Not sensitive* Moderate
Although the larvae are known to be highly intolerant of some oil dispersants, Sabellaria spinulosa has been found to thrive in polluted areas. In particular in an area with acidified halogenated effluent. It is found at higher densities near the effluent than elsewhere through the exclusion of other species (Hoare & Hiscock, 1974). The species has been assessed as tolerant* by extrapolating from these observations. It may well be that Sabellaria spinulosa has different sensitivities to other synthetic chemicals but this information is not available.
Heavy metal contamination
No information No information No information Not relevant
Insufficient
information
Hydrocarbon contamination
No information No information No information Not relevant
Insufficient
information
Radionuclide contamination
No information No information No information Not relevant
Insufficient
information
Changes in nutrient levels
No information No information No information Not relevant
Insufficient
information
No information Not relevant No information Not relevant
Intermediate High Low Moderate
The species only occurs in fully marine environment, however, as it does occasionally occur in the intertidal, it must be able to tolerate some reduced salinity caused by precipitation run off. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).
Intermediate High Low Very low
Cole et al. (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2 mg/l. There is no information about Sabellaria spinulosa tolerance to changes in oxygenation. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).

Biological pressures

 IntoleranceRecoverabilitySensitivityEvidence/Confidence
No information No information No information Not relevant
Insufficient
information
No information No information No information Not relevant
Insufficient
information
Not relevant Not relevant Not relevant Low
Sabellaria spinulosa is unlikely to be the target of extractions (for instance, for bait).
Intermediate High Low Low
Fisheries for the pink shrimp Pandalus montagui and brown shrimps (Crangon crangon) (often associated with areas of Sabellaria spinulosa reefs) have been implicated in the loss or damage of reefs. However, Vorberg (2000) undertook experimental and observational studies that indicated only minor damage to tubes and rapid recovery as a result of shrimp fisheries. Nevertheless, populations, especially if as loose aggregations, may be displaced by mobile fishing gear and a precautionary intolerance of intermediate is suggested. High levels of recruitment means that recovery could be quite rapid, say within a year (see additional information). The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson, 1929).

Additional information

Sabellaria spinulosa is most frequently found in disturbed and polluted conditions and is a r-strategist (a life strategy which allows a species to deal with the vicissitudes of climate and food supply by responding to suitable conditions with a high rate of reproduction. R-strategists are continually colonizing habitats of a temporary nature (from Baretta-Bekker et al., 1992)). Sabellaria spinulosa occurs in high densities on subtidal gravels that would be expected to be disturbed every year or perhaps once every few years due to storms and in polluted conditions. Areas where Sabellaria spinulosa had been lost due to winter storms appeared to recolonize up to a maximum thickness of 2.4 cm during the following summer (R. Holt, pers. comm. in Jones et al., 2000). Recoverability is therefore expected to be very high for the species.

Importance review

Policy/legislation

- no data -

Status

National (GB) importance-Global red list (IUCN) category-

Non-native

Native-
Origin- Date Arrived-

Importance information

UK BAP is as reefs. When found in reef or crust form the species provides structure for other organisms in the form of crevices and shelter. Some species also bore into the sandy crust. George & Warwick (1985) found that the structural complexity provided by Sabellaria spinulosa facilitated the development of a community with a large number of small species.

Bibliography

  1. Cunningham, P.N., Hawkins, S.J., Jones, H.D. & Burrows, M.T., 1984. The geographical distribution of Sabellaria alveolata (L.) in England, Wales and Scotland, with investigations into the community structure of and the effects of trampling on Sabellaria alveolata colonies. Nature Conservancy Council, Peterborough, Contract Report no. HF3/11/22., University of Manchester, Department of Zoology.

  2. English Nature, 1998. Echoes lead to reef discoveries. http://dialspace.dial.pipex.com/town/plaza/ae094/en402.htm#Echoes, 1999-06-14

  3. George, C.L. & Warwick, R.M., 1985. Annual macrofauna production in a hard-bottom reef community. Journal of the Marine Biological Association of the United Kingdom, 65, 713-735.

  4. Gruet, Y., 1982. Recherches sur l'ecologie des "recifs" édifié par l'annélide polychète Sabellaria alveolata (Linnhé). , Université de Nantes.

  5. Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

  6. Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

  7. Hoare, R. & Hiscock, K., 1974. An ecological survey of the rocky coast adjacent to the effluent of a bromine extraction plant. Estuarine and Coastal Marine Science, 2 (4), 329-348.

  8. Howson, C.M. & Picton, B.E. (ed.), 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

  9. Jones, L.A., Hiscock, K. & Connor, D.W., 2000. Marine habitat reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs. Joint Nature Conservation Committee, Peterborough. (UK Marine SACs Project report.). Available from: http://www.ukmarinesac.org.uk/pdfs/marine-habitats-review.pdf

  10. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  11. Vorberg, R., 2000. Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta). ICES Journal of Marine Science, 57, 1416-1420.

  12. Wilson, D.P., 1929. The larvae of the British sabellarians. Journal of the Marine Biological Association of the United Kingdom, 16, 221-269.

  13. Wilson, D.P., 1970b. The larvae of Sabellaria spinulosa and their settlement behaviour. Journal of the Marine Biological Association of the United Kingdom, 50, 33-52.

Citation

This review can be cited as:

Jackson, A. & Hiscock, K. 2008. Sabellaria spinulosa Ross worm. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: http://www.marlin.ac.uk/species/detail/1133

Last Updated: 18/03/2008