Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Georgina Budd | Refereed by | This information is not refereed |
Authority | Spooner, 1947 | ||
Other common names | - | Synonyms | - |
- none -
Class | Malacostraca | Crabs, lobsters, sand hoppers and sea slaters |
Order | Amphipoda | Sand hoppers and skeleton shrimps |
Family | Gammaridae | |
Genus | Gammarus | |
Authority | Spooner, 1947 | |
Recent Synonyms |
Typical abundance | |||
Male size range | < 22mm | ||
Male size at maturity | |||
Female size range | 7-8mm | ||
Female size at maturity | |||
Growth form | Articulate | ||
Growth rate | |||
Body flexibility | High (greater than 45 degrees) | ||
Mobility | |||
Characteristic feeding method | Surface deposit feeder | ||
Diet/food source | Herbivore | ||
Typically feeds on | Organic detritus and seaweed. | ||
Sociability | |||
Environmental position | Epibenthic | ||
Dependency | No information found. | ||
Supports | No information | ||
Is the species harmful? | No |
Physiographic preferences | Estuary |
Biological zone preferences | Lower infralittoral, Upper infralittoral |
Substratum / habitat preferences | Macroalgae, Coarse clean sand, Gravel / shingle |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.) |
Wave exposure preferences | Extremely sheltered, Sheltered, Very sheltered |
Salinity preferences | Low (<18 psu), Reduced (18-30 psu) |
Depth range | 0-10 m |
Other preferences | No text entered |
Migration Pattern | Non-migratory / resident |
Reproductive type | Gonochoristic (dioecious) | |
Reproductive frequency | Annual protracted | |
Fecundity (number of eggs) | See additional information | |
Generation time | <1 year | |
Age at maturity | 20-30 days | |
Season | Autumn - Spring | |
Life span | <1 year |
Larval/propagule type | - |
Larval/juvenile development | Direct development |
Duration of larval stage | Not relevant |
Larval dispersal potential | 100 -1000 m |
Larval settlement period | Not relevant |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
Intermediate | Very high | Low | Low | |
Gammarus salinus lives in a variety of locations within the estuarine environment: amongst algae and other vegetation, as well as generally over the sediment surface and beneath stones. Gammarus salinus is a mobile species capable of a rapid escape response and therefore likely to be able to local substratum loss. Nevertheless, a proportion of the population is likely to be removed with the substratum. Therefore, an intolerance assessment of intermediate has been made. Recoverability is likely to be very high (see additional information below. | ||||
Intermediate | Very high | Low | Moderate | |
Gammarus salinus lives in a variety of locations within the estuarine environment: amongst algae and other vegetation, as well as generally over the sediment surface and beneath stones. It is a mobile species capable of a rapid escape response (back flip) if disturbed, however in the event of suddenly being smothered by 5 cm of sediment individuals resting on the surface may be killed, particularly so if the materials are viscous or impermeable. Intolerance has been assessed to be intermediate. Recovery has been assessed to be very high owing to the production of an new generation within the year (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
As an estuarine species Gammarus salinus probably experiences fluctuations in the concentration of suspended sediment, which in the estuarine environment may be measurable in grams per litre (benchmark is mg per litre). Consequently the benchmark increase for the duration of one month is unlikely to affect Gammarus salinus and it has been assessed to be tolerant. | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
As an estuarine species Gammarus salinus probably experiences fluctuations in the concentration of suspended sediment, which in the estuarine environment may be measurable in grams per litre (benchmark is mg per litre). Consequently the benchmark decrease for the duration of one month is unlikely to affect Gammarus salinus and it has been assessed to be tolerant. | ||||
Low | Immediate | Not sensitive | Moderate | |
Desiccation events are unlikely to prove a lethal factor to a species with a rapid escape response and ability to find cover. Consequently, the species is probably sufficiently mobile to avoid prolonged exposure if stranded and intolerance has been assessed to be low. Recovery is likely to be immediate upon finding cover. | ||||
Low | Immediate | Not sensitive | Moderate | |
In the estuarine environment Gammarus salinus may experience regular periods of immersion and emersion. At low tide it probably seeks shelter amongst vegetation, under pebbles / rock or burrows loosely into the surface of the substratum in order to avoid the effects of desiccation. Gammarus salinus is a relatively slow crawler, swimming using the three pairs of pleopods is much faster. However, the speciality of amphipods is the tail-flip, a rapid escape response whereby the abdomen flicks the animal away after the uropods are dug into the ground. Consequently, the species is probably sufficiently mobile to avoid prolonged exposure resulting from an increase in emergence and intolerance has been assessed to be low. Recovery is likely to be immediate upon finding cover. | ||||
Low | Very high | Very Low | Moderate | |
In the estuarine environment Gammarus salinus may experience regular periods of immersion and emersion. An increased period of immersion may favour fish which prey upon Gammarus salinus such as sprats, Sprattus sprattus. However, although normally abundant in the environment, Gammarus salinus was ingested in disproportionately small quantities by other fish, perhaps reflecting its concealment amongst floating weeds and a selection made by larger fish against small (< 1 cm) prey items (Moore & Moore, 1976). Intolerance has been assessed to be low and recoverability likely to be very high (see additional information, below). | ||||
High | Very high | Low | Low | |
Spooner (1947) stated that species of Gammarus are relatively indifferent to the nature of the substratum to a remarkable degree, provided that there is some kind of object to provide them with shelter/cover. However, an increase in the water flow rate would increase scour which, over the period of a year (see benchmark) may create the problem of retaining a position in the estuarine environment, against conditions of net seaward transport. Therefore intolerance has been assessed to be high as the population may be washed from the estuary. Recovery and repopulation are likely to occur within a year (see additional information, below). | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
A decrease in water flow rate, in the absence of wave action determining particle grain size, would favour the accretion of finer silts and clays. Such deposition would alter not only the physical properties of the substratum, but also the chemical properties, especially the degree of oxygenation. Spooner (1947) stated that species of Gammarus are relatively indifferent to the nature of the substratum to a remarkable degree, provided that there is some kind of object to provide them with shelter/cover and such changes are unlikely to be of consequence to Gammarus salinus. Therefore, an assessment of tolerant has been made. | ||||
Low | Immediate | Not sensitive | Moderate | |
Gammarus salinus lives in brackish waters and experiences a variety of temperature and salinity changes. Furch (1972) exposed Gammarus salinus to both constant (8 °C, 14 °C & 20 °C) and fluctuating (daily fluctuations between 8 °C to 20 °C) temperatures. The species revealed significant differences in heat resistance, which became apparent within 12 hours. Gammarus salinus was able to endure long term exposure (2 to 4 weeks) to fluctuating temperatures, although fast temperature changes (every hour) were less well tolerated by it than slower temperature fluctuations (2 hours). Intolerance has been assessed to be low, as acute temperature changes may cause additional stress but did not result in mortality. Recovery from rapid fluctuations was apparent within a matter of hours, therefore recovery has been assessed to be immediate. Parasitized specimens may be more intolerant of acute temperature increases. | ||||
Intermediate | Very high | Low | Low | |
Gammarus salinus lives in brackish waters and experiences a variety of temperature and salinity changes. The distribution of Gammarus salinus extends to the north of the UK, into the Baltic Sea, so the species would probably tolerate a chronic decrease of 2 °C. Acute temperature decreases may cause death of vulnerable individuals, such as those that are parasitized owing to additional stress, and intolerance has been assessed to be intermediate. | ||||
Low | Very high | Very Low | Low | |
Gammarus salinus may feed upon macroalgae as well as detritus, which is dependant on light availability for photosynthesis. An increase in turbidity for the duration of a year would reduce light penetration and therefore probably the abundance of macroalgae as a food resource which may consequently affect the species viability. Therefore intolerance to increased turbidity has been assessed to be low. The species is likely to have a very high capacity for recovery (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
Gammarus salinus is not likely to be directly sensitive to decreased turbidity. | ||||
High | High | Moderate | Low | |
Gammarus salinus normally inhabits relatively well sheltered estuarine environments. It is likely to be washed away as a result of increased wave exposure owing to turbulence displacing it from shelter. The algae on which it feeds may also become detached, reducing its food source. Consequently intolerance has been assessed to be high. | ||||
Tolerant | Not relevant | Not sensitive | Low | |
Decreased wave exposure is likely to result in changes to the composition of the estuarine substratum e.g., the accretion of finer particulate matter, settling out as a result of reduced turbulence. However, Spooner (1947) considered that species of Gammarus were relatively indifferent to the nature of the substratum to a remarkable degree, provided that they could find cover and it has been assessed as tolerant of a decrease in wave exposure. | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
Gammarus salinus may respond to vibrations caused by noise, but it is unlikely to be directly sensitive to noise at the benchmark level. | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
Gammarus salinus is unlikely to have the visual acuity to detect the presence of boats, machinery present in its environment, and it has been assessed not to be sensitive to the factor. | ||||
Tolerant | Not relevant | Not sensitive | Not relevant | |
Gammarus salinus is small, a highly mobile and likely to be able to avoid physical disturbance or to pass through passing fishing gear. Therefore, it has been assessed to be tolerant of physical disturbance. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
Gammarus salinus is a mobile species and therefore an intolerance assessment for displacement was not considered to be relevant. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
Low | Very high | Very Low | Moderate | |
No information specifically concerning the effects of synthetic chemicals upon Gammarus salinus was found. However, in the closely related Gammarus duebeni, reproductive behaviour in the male is evoked by its detection of a chemical cue from the female. The cue is perceived by receptors on the second antennae and its function is to synchronize mating with the suitable phase of ecdysis in the female. Low concentration of the surfactant TWEEN 80 were shown to interfere with the reception of the females chemical cues, resulting in a decrease in mating success (Lyes, 1979). Lawrence & Poulter (2001) examined the effect of pentachlorophenol (PCP) and benzo[a]pyrene (B[a]P) on the embryogenesis, and swimming stamina of Chaetogammarus marinus against a pump driven head of water. Swimming stamina was significantly impaired at a concentration of 40 µg PCP/l and 20µg B[a]P/l, whilst development of in vitro cultured embryos was significantly impaired by 20 µg /l of both PCP and B[a]P. intolerance has been assessed to be low owing to evidence of sub-lethal effects and reduced reproductive potential. Gammarus salinus is likely to have a very high capacity for recovery (see additional information below), assuming deterioration of the contaminants. | ||||
Low | Very high | Very Low | Moderate | |
| ||||
High | High | Moderate | High | |
Amphipods have been reported to be sensitive to oil (Suchanek, 1993).
| ||||
No information | Not relevant | No information | Not relevant | |
Insufficient information. | ||||
Tolerant* | Not relevant | Not sensitive* | Low | |
Gammarus salinus is a both a detritivore and herbivore, consequently it may benefit form nutrient enrichment that stimulates the productivity of phytoplankton and macroalgae. Anger (1977) listed Gammarus salinus as an indicator species for slight organic pollution. Furthermore, Gammarus salinus has demonstrated a negative rheotaxic response to lethal and sublethal concentrations of oxygen (see oxygenation) which may result as a consequence of eutrophication. Therefore it has been assessed to be tolerant* to nutrient enrichment. | ||||
Low | Immediate | Not sensitive | Low | |
Gammarus salinus is a euryhaline species relatively tolerant of salinities as low as 2 psu and as high as 30 psu, but it is most abundant at 10 psu. It is likely that the species would experience some physiological stress following an acute increase in salinity (see decrease in salinity below), intolerance has therefore been assessed to be low and, as an euryhaline species, it is likely to recover relatively rapidly. | ||||
Low | Immediate | Not sensitive | High | |
Gammarus salinus is a euryhaline species relatively tolerant of salinities as low as 2 psu and as high as 30 psu, but it is most abundant at 10 psu. Bulnheim (1984) recorded the respiratory response of Gammarus salinus in response to an acute salinity change, from 30 psu to 10 psu, respiration rate moderately increased after an initial shock like response and initially specimens were quiescent as they acclimated to the decreased salinity but recovered within 24 hours. Intolerance has therefore been assessed to be low and recovery immediate. | ||||
Low | Immediate | Not sensitive | High | |
Gammarids are occasionally found in locations with reduced O2 tensions, especially on soft substratum, in stagnant pools and in polluted waters. In deeper waters oxygen deficiency may be accompanied by the formation of hydrogen sulphide. Bulnheim (1984) examined the survival rates of five gammarid species held in brackish water with poor oxygenation. The LT 50 for Gammarus salinus held at 15 °C, 10 psu with a depleted oxygen level of 0.5 ml O2/l was 6.5 hours, 100% mortality occurred after 15 hours. Gammarus salinus being more tolerant than Gammarus locusta and Gammarus oceanicus. Gammarus salinus had an LT50 of 4 hours in brackish-water (10 psu) with oxygen depletion in the presence of hydrogen sulphide (< 0.2 ml O2/l + 50 mg Na2S.9H2O/l) at 15 °C . However, Vobis (1973) used an experimental vessel to observe the behaviour of gammarids in various water current speeds and oxygen concentrations. In adequately oxygenated waters, Gammarus salinus demonstrated a moderate positive rheotaxis (swimming into the current). Lethal and sublethal oxygen concentrations, however, led to negative rheotaxis (swimming away from the current). Oxygen deficiency caused Gammarus salinus to swim downstream at 2.5 mg O2 per litre. An intolerance assessment of low has been made, as the species can avoid the factor. The species is likely to repopulate areas as soon as the oxygen concentration of the water becomes optimal and recovery has been assessed to be immediate. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | Not relevant | No information | Not relevant | |
Gammarus salinus, Gammarus zaddachi and Gammarus oceanicus were found to be important host species for the transmission of parasites (Voigt, 1991). Larval stages of 4 fish parasites (1 Nematoda, 2 Acanthocephala and 1 Digena) as well as larval stages of 4 bird parasites (1 Nematoda, 1 Acanthocephala, 1 Digena and 1 Cestoda) were found. However, there was insufficient information concerning the effect that such parasitization may have on the species viability. | ||||
No information | Not relevant | No information | Not relevant | |
No information concerning non-native species that might affect the abundance or survival of Gammarus salinus was found. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
Gammarus salinus is not a species targeted for extraction. | ||||
No information | Not relevant | No information | Not relevant | |
No information concerning the extraction of other species that might affect the abundance or survival of Gammarus salinus was found. |
- no data -
National (GB) importance | - | Global red list (IUCN) category | - |
Native | - | ||
Origin | - | Date Arrived | - |
Anger, K., 1977. Benthic invertebrates as indicators of organic pollution in the western Baltic Sea. Internationale Revue der Gesamten Hydrobiologie, 62, 245-254.
Breeman, A.M. & Hoeksema, B.W., 1987. Vegetative propagation of the red alga Rhodochorton purpureum by means of fragments that escape digestion by herbivores. Marine Ecology Progress Series, 35, 197-201.
Bryan, G.W. & Gibbs, P.E., 1983. Heavy metals from the Fal estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Plymouth: Marine Biological Association of the United Kingdom. [Occasional Publication, no. 2.]
Bulnheim, H.P., 1984. Physiological responses of various Gammarus species to environmental stress. Limnologica (Berlin), 15, 461-467.
Cabioch, L., Dauvin, J.C. & Gentil, F., 1978. Preliminary observations on pollution of the sea bed and disturbance of sub-littoral communities in northern Brittany by oil from the Amoco Cadiz. Marine Pollution Bulletin, 9, 303-307.
Crothers, J.H. (ed.), 1966. Dale Fort Marine Fauna. London: Field Studies Council.
Eltringham, S.K., 1971. Life in mud and sand. London: The English Universities Press Ltd.
Furch, K., 1972. The influence of pretreatment with constant and fluctuating temperatures on the heat resistance of Gammarus salinus and Idotea balthica. Marine Biology, 15, 12-34.
Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.
JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid
Kinné, O., 1960. Gammarus salinus - einige Daten uber den Umwelt-einfluss auf Wachstum, Hautungsfolge, Herzfrequenz und Eientwicklungsdauer. Crustaceana, 1, 208-217.
Kolding, S. & Fenchel, T.M., 1979. Coexistence and life cycle characteristics of five species of the amphipod genus Gammarus. Oikos, 33, 323-327.
Kolding, S., 1981. A key for marine and brackishwater Gammarus species (Crustacea, Amphipoda). Natura Jutlandica, 19, 57-60.
Lawrence, A.J. & Poulter, C., 2001. Impact of copper, pentachlorophenol and benzo[a]pyrene on the swimming efficiency and embryogenesis of the amphipod Chaetogammarus marinus. Marine Ecology Progress Series, 223, 213-223.
Leineweber, P., 1985. The life-cycles of four amphipod species in the Kattegat. Holarctic Ecology, 8, 165-174.
Lincoln, R.J., 1979. British Marine Amphipoda: Gammaridea. London: British Museum (Natural History).
Lindén, O., 1976. Effects of oil on the amphipod Gammarus oceanicus. Environmental Pollution, 10, 239-250.
Lindén, O., 1976b. Effects of oil on the reproduction of the amphipod Gammarus oceanicus. Ambio, 5, 36-37.
Lyes, M.C., 1979. The reproductive behaviour of Gammarus duebeni (Lilljeborg), and the inhibitory effect of a surface active agent. Marine Behaviour and Physiology, 6, 47-55.
Moore, J.W. & Moore, I.A., 1976. The basis of food selection in some estuarine fishes; eels, Anguilla anguilla (L.), whiting, Merlangius merlangus (L.), sprat, Sprattus sprattus and stickleback, Gasterosteus aculeatus (L.). Journal of Fish Biology, 9, 375-390.
Ponat, A., 1975. Investigations on the influence of crude oil on the survival and oxygen consumption of Idotea baltica and Gammarus salinus. Kieler Meeresforschungen, 31, 26-31.
Ritz, D.D., 1980. Tolerance of intertidal amphipods to fluctuating conditions of salinity, oxygen and copper. Journal of the Marine Biological Association of the United Kingdom, 60, 489-498.
Roast, S.D., Widdows, J. & Jones, M.B., 1999c. Respiratory responses of the estuarine mysid Neomysis integer (Peracarida: Mysidacea) in relation to a variable environment. Marine Biology, 133, 643-649.
Ruppert, E.E. & Barnes, R.D., 1994. Invertebrate zoology (6th ed.). Fort Worth, USA: Saunders College Publishing.
Spooner, G.M., 1947. The distribution of Gammarus species in estuaries. Part 1. Journal of the Marine Biological Association of the United Kingdom, 27, 1-52.
Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523. DOI https://doi.org/10.1093/icb/33.6.510
Vobis, H., 1973. Rheotactic behaviour of some Gammarus species in different oxygen concentrations of the water. Helgolander Wissenschaftliche Meeresuntersuchungen, 25, 495-508.
Voigt, M.O.C., 1991. Community structure of the helminth parasite fauna of gammarids (Crustacea: Amphipoda) in Kiel Bay, western Baltic Sea. Meeresforschung, 33, 266-274.
Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.
Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-03-28
This review can be cited as:
Last Updated: 19/08/2002