Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Dr Keith Hiscock | Refereed by | This information is not refereed |
Authority | (De Kay, 1843) | ||
Other common names | - | Synonyms | - |
A rounded solitary ascidian about 1-3 cm across that often occurs in dense clusters. The colour is grey or greenish-blue and the test is covered with fibrils that may or may not be attached with sand grains, shell fragments etc.
Several species had, until recently, been included in Molgula manhattensis: Molgula simplex Alder & Hancock, 1870; Molgula siphonata Alder 1850; Molgula socialis Alder 1848, and Molgula tubifera Orstedt 1844 (Connor & Picton in Howson & Picton, 1997). Separation for the purpose of this review has not been carried out as it is uncertain to what extent authors of papers have worked with Molgula manhattensis sensu stricto. It also seems (Kott 1976 quoted in Kott 1985) that the eastern Atlantic species may be Molgula tubifera and that Molgula manhattensis occurs on the Atlantic coast of North America from Maine to Lousiana. Nevertheless, the Species Directory (Howson & Picton, 1997) lists Molgula manhattensis for Britain and Ireland and so no change in name is suggested here.
- none -
Phylum | Chordata | Sea squirts, fish, reptiles, birds and mammals |
Class | Ascidiacea | Sea squirts |
Order | Stolidobranchia | |
Family | Molgulidae | |
Genus | Molgula | |
Authority | (De Kay, 1843) | |
Recent Synonyms |
Typical abundance | High density | ||
Male size range | |||
Male size at maturity | |||
Female size range | Small(1-2cm) | ||
Female size at maturity | |||
Growth form | Globose | ||
Growth rate | Data deficient | ||
Body flexibility | Low (10-45 degrees) | ||
Mobility | |||
Characteristic feeding method | Active suspension feeder | ||
Diet/food source | |||
Typically feeds on | Plankton | ||
Sociability | |||
Environmental position | Epibenthic | ||
Dependency | Independent. | ||
Supports | Host Host for the marine protist Nephromyces as an endosymbiont. | ||
Is the species harmful? | No |
Molgula manhattensis typically lives on hard substrata including artificial substrata. Molgula manhattensis sensu stricto (see taxonomy page) occurs especially in ports and harbours (Connor & Picton in Howson & Picton, 1997).
Physiographic preferences | Ria / Voe, Estuary, Enclosed coast / Embayment |
Biological zone preferences | Lower circalittoral, Lower infralittoral, Upper circalittoral |
Substratum / habitat preferences | Bedrock, Cobbles, Large to very large boulders, Small boulders |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.) |
Wave exposure preferences | Exposed, Extremely sheltered, Moderately exposed, Sheltered, Very sheltered |
Salinity preferences | Full (30-40 psu), Variable (18-40 psu) |
Depth range | 0-90 m |
Other preferences | No text entered |
Migration Pattern | Non-migratory / resident |
Reproductive type | Gonochoristic (dioecious) | |
Reproductive frequency | Annual protracted | |
Fecundity (number of eggs) | ||
Generation time | <1 year | |
Age at maturity | Insufficient information | |
Season | Insufficient information | |
Life span | Insufficient information |
Larval/propagule type | - |
Larval/juvenile development | Oviparous |
Duration of larval stage | < 1 day |
Larval dispersal potential | 1 km -10 km |
Larval settlement period | Insufficient information |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | Very high | Low | High | |
The species is permanently attached to the substratum so substratum loss will result in loss of the population. Therefore an intolerance of high has been reported. For recoverability, see additional information below. | ||||
Low | Very high | Very Low | High | |
The species is permanently attached to the substratum and is an active suspension feeder so that some clearance of smothering silt may occur. The species can extend its siphons to a small extent above silt. It can also most likely maintain a passage through the silt to the siphons. However, groups are likely to be covered by silt or other material and therefore be subject to hypoxia. Of greatest importance may therefore be the ability of Molgula manhattensis to live in the hypoxic conditions that might occur under silt. Sagasti et al. (2000) demonstrated that Molgula manhattensis can withstand episodes of hypoxia and so mortality is unlikely to occur. Intolerance is likely to be low. Recovery of condition is likely to be very high. | ||||
Low | Immediate | Not sensitive | Moderate | |
Molgula manhattensis frequently occurs in habitats with high levels of suspended matter. Increased suspended sediment may potentially have some detrimental effects in clogging feeding filtration mechanisms, however, there are possible benefits from increased siltation (Naranjo et al. 1996). On resumption of normal energy expenditure and feeding, condition should be restored rapidly. | ||||
Tolerant | Not relevant | Not sensitive | Moderate | |
Although there may be some reliance on the organic material associated with suspended silt for nutrition, the reduced need for energy expenditure to remove silt may be beneficial. On balance, the species is most likely tolerant. | ||||
Intermediate | Very high | Low | Moderate | |
The species occurs in the intertidal near to low water level and so is exposed to some desiccation. Nevertheless, it has a soft body and may be easily subject to drying-up. Exposure to desiccating influences for one hour will probably kill a proportion of the population. Therefore, an intolerance of intermediate has been recorded. For recoverability, see additional information below. | ||||
Intermediate | Very high | Low | Moderate | |
The species occurs in the intertidal near to low water level and so is exposed to some emergence. Nevertheless, it has a soft body and may be easily subject to drying-up. Exposure to desiccating influences as a result of increased emergence will probably kill a proportion of the population. Therefore, an intolerance of intermediate has been recorded. For recoverability, see additional information below. | ||||
Tolerant* | Not relevant | Not sensitive* | High | |
As a predominantly sublittoral species, increase in emergence may benefit populations found on the lower shore by providing additional substratum for colonization. | ||||
Low | Immediate | Not sensitive | High | |
As a general rule, ascidians require a reasonable water flow rate in order to ensure sufficient food availability. High water flow rates may also be detrimental to feeding ability and posture. Hiscock (1983) found that, for the solitary ascidian Ascidia mentula, siphons closed when the current velocity rose above about 15 cm/sec. It seems likely therefore that some reduction in feeding would occur with increased water flow rate although that would result in slower growth and loss of condition but not mortality. Intolerance has therefore been assessed as low. On resumption of normal energy expenditure and feeding, condition should be restored rapidly. | ||||
Low | Immediate | Not sensitive | Moderate | |
As a general rule, ascidians require a reasonable water flow rate in order to ensure sufficient food availability and oxygen supply. However, Molgula manhattensis is frequently found in areas with minimal water exchange and renewal such as harbours, marinas and docks. Intolerance has therefore been assessed as low. Sagasti et al. (2000) demonstrated that Molgula manhattensis can withstand episodes of hypoxia and so, even if stagnation occurs for short periods, mortality is unlikely to occur. Whilst food availability may be reduced in comparison with areas with higher flow rates, on resumption of normal energy expenditure and feeding, condition should be restored rapidly. | ||||
Tolerant | Not relevant | Not sensitive | High | |
In the North Atlantic and in Pacific locations where Molgula manhattensis has developed populations, temperatures may be higher by several degrees than in Britain and Ireland. It is not therefore expected that increased temperatures at the level of the benchmark will adversely affect populations. | ||||
Tolerant | Not relevant | Not sensitive | High | |
The distribution of Molgula manhattensis in the North Atlantic extends to Maine and to northern Norway so that decrease in temperatures at the level of the benchmark is unlikely to adversely affect populations. | ||||
Tolerant | Not relevant | Not sensitive | Moderate | |
Molgula manhattensis lives in harbours and the entrances to estuaries where turbidity may increase to high levels. In experiments aimed at identifying the effects of adding clay suspensions to water, Frank et al. (2000) showed the ability of Molgula manhattensis to increase clearance rates as concentration of particles increased. It is not expected that increase in turbidity at the level of the benchmark will adversely affect Molgula manhattensis. | ||||
Tolerant* | Not relevant | Not sensitive* | Low | |
Although there may be some reliance on the organic material associated with turbidity for nutrition, the reduced need for energy expenditure to clear silt may be beneficial and an intolerance of tolerant* has been recorded. | ||||
Intermediate | Very high | Low | Low | |
As a general rule, ascidians require a reasonable water flow rate in order to ensure sufficient food availability and oxygen supply. However, high water flow rates may be detrimental to feeding ability and posture. Hiscock (1983) found that, for the solitary ascidian Ascidia mentula, siphons closed when current velocity rose above about 15 cm/sec. It seems likely therefore that some reduction in feeding would occur with increased oscillatory water movement although that would result in slower growth and loss of condition but not mortality. On resumption of normal energy expenditure and feeding, condition should be restored rapidly. Although individuals are firmly attached, there is a possibility that, especially in closely packed colonies, wave action may displace large numbers. Intermediate intolerance but with low confidence is recorded. Recovery is likely to be very high (see additional information below). | ||||
Tolerant* | Not relevant | Not sensitive* | Low | |
As a general rule, ascidians require a reasonable water flow rate in order to ensure sufficient food availability and oxygen supply and maintain surfaces clean of silt. If decrease in wave action occurs where tidal flow continues to provide favourable conditions, the species may benefit because of reduction in the likelihood of displacement. However, Molgula manhattensis is frequently found in areas with minimal water exchange and renewal such as harbours, marinas and docks suggesting that decrease in wave exposure even in the absence of significant tidal currents would not be adverse. Sagasti et al. (2000) demonstrated that Molgula manhattensis can withstand episodes of hypoxia and so, even if stagnation occurs for short periods, mortality is unlikely to occur. Whilst food availability may be reduced by reduction in wave action, on resumption of normal energy expenditure and feeding, condition should be restored rapidly. Overall, bearing in mind that the favoured location for Molgula manhattensis is in wave sheltered habitats, the species might benefit from decrease in wave exposure. | ||||
Tolerant | Not relevant | Not sensitive | High | |
Tunicates are not known to have organs sensitive to noise. | ||||
Tolerant | Not relevant | Not sensitive | High | |
Tunicates are not known to respond to visual presence. | ||||
High | Very high | Low | Moderate | |
Colonies are flexible and soft providing a buffer against external abrasion from such factors as a fishing pot landing on a colony. However, individuals and colonies may be scraped off the rock by an anchor or passing dredge Intolerance is therefore assessed as high. For recoverability, see additional information. | ||||
High | Very high | Low | Moderate | |
The colonies are attached permanently to the substratum and will not re-attach so that displacement, even if to a suitable habitat, would most likely result in mortality. An assessment of high intolerance is therefore made. For recoverability, see additional information below. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
Low | Immediate | Not sensitive | Low | |
Molgula manhattensis is most likely tolerant of synthetic chemical pesticides. Weis & Weis (1992) found that the ascidian was commonly present, although in small numbers, on wood treated with chromated arsenate. In mesocosm experiments, Flemer et al. (1995) studied the effect of the pesticide endosulfan and found that the average abundance of Molgula manhattensis increased with increasing concentration of the pesticide possibly as a result of reduced competition with more susceptible organisms. The high abundance of the species in harbours where levels of tributyl tin are or were likely to be high also suggests tolerance. Molgula manhattensis may benefit from tolerance to synthetic pollutants by occupying space that would have been colonized by less tolerant species. No evidence has been found for sublethal effects from which recovery would be likely to be rapid. Overall, an intolerance of low is suggested but with a low confidence. | ||||
No information | Not relevant | No information | Not relevant | |
No information has been found. | ||||
No information | Not relevant | No information | Not relevant | |
No information has been found. | ||||
No information | Not relevant | No information | Not relevant | |
No information has been found. | ||||
No information | Not relevant | No information | Not relevant | |
No information has been found. | ||||
Tolerant | Not relevant | Not sensitive | Moderate | |
Van Name (1945), quoted in Kott (1985), noted that Molgula manhattensis occurred in salinities equivalent to 20 to 36 psu whilst Hartmeyer (1923), quoted in Tokioka & Kado (1972), recorded Molgula manhattensis in brackish (16-30 psu) water of the Belt Sea. Ascidians are mainly found in full salinity and it is not expected that increase in salinity will have an adverse effect except in the possibility of allowing other species to out-complete Molgula manhattensis. | ||||
Intermediate | Very high | Low | Moderate | |
Van Name (1945), quoted in Kott (1985), noted that Molgula manhattensis occurred in salinities equivalent to 20 to 36 psu whilst Hartmeyer (1923) quoted in Tokioka & Kado (1972) recorded Molgula manhattensis in brackish (16-30 psu) water of the Belt Sea. A fall in salinity from full to reduced would not therefore be expected to have an adverse effect. However, in situations where salinity is already variable or reduced, a further lowering is likely to result in mortality. Intolerance is indicated as intermediate but may be high. For recoverability, see additional information. | ||||
Low | Immediate | Not sensitive | Moderate | |
Sagasti et al. (2000) demonstrated that Molgula manhattensis can withstand episodes of hypoxia and so intolerance is likely to be low amounting to some loss in condition. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
Tolerant | Not relevant | Not sensitive | Low | |
Saffo & Davis (1982) describe how the renal sac of Molgula manhattensis consistently harbours a collection of fungus-like cells, "Nephromyces". In turn, Nephromyces is infected with bacteria (Saffo, 1990). Both fungus and bacteria act in a symbiotic way and not strictly as harmful pathogens. In the absence of information about other pathogens, 'not sensitive' is recorded. | ||||
Tolerant | Not relevant | Not sensitive | Moderate | |
There are no non-native species currently known to displace or adversely affect Molgula manhattensis although the stalked ascidian Styela clava may occur in similar habitats. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
There is no known extraction of this species. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
There are no species with which Molgula manhattensis is associated that may be extracted. |
- no data -
National (GB) importance | - | Global red list (IUCN) category | - |
Native | Non-native | ||
Origin | Northern America | Date Arrived | 1960 |
"Molgula" is indicated as a main food source for the opisthobranch Okenia elegans (see Thompson & Brown 1976). However, the species of Molgula is not given and is not believed to be Molgula manhattensis. Molgula manhattensis is preyed upon by the gastropod Anachis avara on the east coast of North America (see, for instance, Osman et al. 1992). No records have been found of predation specifically on Molgula manhattensis around Britain and Ireland.
Berril, N.J., 1931. Studies in tunicate development. Philosophical Transactions of the Royal Society of London (B), 219, 281-346.
Berrill, N.J., 1950. The Tunicata with an account of the British species. London: Ray Society.
Flemer, D.A., Stanley, R.S., Ruth, B.F., Bundrick, C.M., Moody, P.H. & Moore, J.C. 1995. Recolonization of estuarine organisms - effects of microcosm size and pesticides. Hydrobiologia, 304, 85-101.
Hiscock, K., 1983. Water movement. In Sublittoral ecology. The ecology of shallow sublittoral benthos (ed. R. Earll & D.G. Erwin), pp. 58-96. Oxford: Clarendon Press.
Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]
Kott, P., 1985. The Australian Ascidiacea. Part I, Phlebobranchia and Stolidobranchia. Memoirs of the Queensland Museum, 23, 1-440.
Millar, R.H., 1970. British Ascidians London: Academic Press.[Synopses of the British Fauna, no. 1.]
Morales-Alamo, R. & Mann, R. 1990. Recruitment and growth of oysters on shell planted at four monthly intervals in the lower Potomac River, Maryland. Journal of Shellfish Research, 9, 165-172.
Naranjo, S.A., Carballo, J.L., & Garcia-Gomez, J.C., 1996. Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? Marine Ecology Progress Series, 144 (1), 119-131.
Osman, R.W. & Whitlatch, R.B., 1995. The influence of resident adults on larval settlement: experiments with four species of ascidians. Journal of Experimental Marine Biology and Ecology, 190, 199-220.
Osman, R.W., Whitlatch. R.B. & Malatesta, R.J. 1992. Potential role of micro-predators in determining recruitment into a marine community. Marine Ecology Progress Series, 83, 35-43.
Otsuka, C.M. & Dauer, D.M. 1982. Fouling community dynamics in Lynnhaven Bay, Virginia. Estuaries, 5, 10-22.
Saffo, M.B., 1990. Symbiosis within a symbiosis: intracellular bacteria within the endosymbiotic protist Nephromyces. Marine Biology, 107, 291-296.
Saffo, M.B. & Davis, W.L., 1982. Modes of infection of the ascidian Molgula manhattensis by its endosymbiont Nephromyces Giard Biological Bulletin, Marine Biological Laboratory, Woods Hole, 162, 105-112.
Sagasti, A., Schaffner, L.C. & Duffy, J.E., 2000. Epifaunal communities thrive in an estuary with hypoxic episodes. Estuaries, 23 (4), 474-487.
Thompson, G.B., 1980. Distribution and population dynamics of the limpet Patella vulgata in Bantry Bay. Journal of Experimental Marine Biology and Ecology, 45, 173-217.
Thompson, T. E. & Brown, G. H., 1976. British Opisthobranch Molluscs. London: Academic Press. [Synopses of the British Fauna, no. 8.]
Tokioka, T. & Kado, Y., 1972. The occurrence of Molgula manhattensis (deKay) in brackish water near Hiroshima, Japan. Publications of the Seto Marine Biological Laboratory, Kyoto University, 21, 21-29.
Weis, J.S. & Weis, P., 1992. Construction materials in estuaries: Reduction in the epibiotic community on chromated copper arsenate (CCA) treated wood. Marine Ecology Progress Series, 83, 45-53.
Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.
Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01
Kent Wildlife Trust, 2018. Biological survey of the intertidal chalk reefs between Folkestone Warren and Kingsdown, Kent 2009-2011. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.
Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.
Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset:https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-03-29
South East Wales Biodiversity Records Centre, 2018. SEWBReC Marine and other Aquatic Invertebrates (South East Wales). Occurrence dataset:https://doi.org/10.15468/zxy1n6 accessed via GBIF.org on 2018-10-02.
This review can be cited as:
Last Updated: 29/04/2008