Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Angus Jackson | Refereed by | Dr Rob Hughes |
Authority | (Lamarck, 1816) | ||
Other common names | Branched sea beard, Branched antenna hydroid | Synonyms | - |
Nemertesia ramosa is a colonial hydroid that lives in small aggregations. Individual colonies consist of an upright and irregularly branched stem up to about 15 cm in height. An individual may have several other colonies attached to the stem. The main stems bear whorls of fine side branches of even length and upwardly pointing, arranged in groups of 6. The hydroid is yellow/orange in colour and is usually more pigmented than the similar Nemertesia antennina.
No text entered
- none -
Phylum | Cnidaria | Sea anemones, corals, sea firs & jellyfish |
Class | Hydrozoa | White weeds, sea firs, sea beard and siphonophores; hydroids |
Order | Leptothecata | |
Family | Plumulariidae | |
Genus | Nemertesia | |
Authority | (Lamarck, 1816) | |
Recent Synonyms |
Typical abundance | High density | ||
Male size range | up to 15cm | ||
Male size at maturity | 7-10cm | ||
Female size range | 7-10cm | ||
Female size at maturity | |||
Growth form | Pinnate | ||
Growth rate | 2.6 - 4.6cm/month | ||
Body flexibility | |||
Mobility | |||
Characteristic feeding method | Non-feeding, Passive suspension feeder | ||
Diet/food source | |||
Typically feeds on | seston | ||
Sociability | |||
Environmental position | Epifaunal | ||
Dependency | Independent. | ||
Supports | Host See additional information | ||
Is the species harmful? | No |
Very little information is directly available on Nemertesia ramosa. Completion of most of the fields has been done through extrapolation from the very similar species Nemertesia antennina.
The main stems of Nemertesia ramosa branch occasionally whereas those of Nemertesia antennina do not. The size at maturity for Nemertesia ramosa (a smaller species) may be less than that for Nemertesia antennina. Growth rates for Nemertesia ramosa may also be lower than those recorded for Nemertesia antennina. Growth rates are highest in the summer and lowest in the winter. An individual planula larva gives rise to a colony (sometimes referred to as an individual). These colonies (individuals) are gregarious. The feeding polyps of this species are too large to be withdrawn into the protective theca. Nemertesia ramosa is fed on by a variety of sea slugs including Doto fragilis, Doto cuspidata, Lomanotus genei, and by the sea spider Endeis spinosa.
Epizoites
Ansín Agís et al (2001) list the following species as epibionts on Nemertesia ramosa: Plumularia setacea, Clytia gracilis, Clytia hemisphaerica, Scalpellum scalpellum, Antennella secundaria, Aglaopheria tubulifera, Plumularia setacea, Obelia bidentata, Camapnularia hincksii, Zygophylax biarmata, Filellum serratum and Modeeria rotunda.
Physiographic preferences | Open coast, Offshore seabed, Sea loch / Sea lough, Ria / Voe, Estuary, Enclosed coast / Embayment |
Biological zone preferences | Lower circalittoral, Lower infralittoral, Upper circalittoral |
Substratum / habitat preferences | Bedrock, Cobbles, Gravel / shingle, Large to very large boulders, Maerl, Pebbles, Small boulders |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.) |
Wave exposure preferences | Extremely sheltered, Sheltered, Ultra sheltered, Very sheltered |
Salinity preferences | Data deficient |
Depth range | 10-500 |
Other preferences | No text entered |
Migration Pattern | Non-migratory / resident |
Reproductive type | Vegetative | |
Reproductive frequency | Semelparous / monotely | |
Fecundity (number of eggs) | 11-100 | |
Generation time | <1 year | |
Age at maturity | Insufficient information | |
Season | Not relevant | |
Life span | <1 year |
Larval/propagule type | - |
Larval/juvenile development | Lecithotrophic |
Duration of larval stage | < 1 day |
Larval dispersal potential | 10 -100 m |
Larval settlement period | Insufficient information |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | Moderate | Moderate | Low | |
This species is permanently fixed to the substratum so substratum loss would cause death. See information on recoverability below. | ||||
Intermediate | Very high | Low | Low | |
Nemertesia ramosa is an upright hydroid with a height of up to 15 cm. The colony structure is fairly tough and flexible. Smothering with 5 cm of sediment may cover over some individuals, others may just have the lower section of the main stem covered. Hughes (1977) found that maturing hydroids that had been smothered with detritus and silt lost most of the hydrocladia and hydranths. After one month, the hydroids were seen to have recovered but although neither the growth rate nor the reproductive potential appeared to have been affected, the viability of the planulae may have been affected. Therefore, an intolerance of intermediate has been recorded. | ||||
Intermediate | Immediate | Very Low | Low | |
Nemertesia ramosa is a passive suspension feeder, extracting seston from the water column. Increased siltation may clog up the feeding apparatus, requiring energetic expenditure to clear. Recovery from the energetic expenditure of clearing the feeding apparatus is likely to take only a few days. | ||||
No information | ||||
High | Moderate | Moderate | Low | |
The species is entirely sub-tidal and typically found below 10 m unless in very sheltered areas. Exposure to desiccating influences will probably cause death. See information on recoverability below. | ||||
High | Moderate | Moderate | Low | |
The species is entirely sub-tidal and typically found below 10m unless in very sheltered areas. Emergence for an hour will probably cause death. See information on recoverability below. | ||||
No information | ||||
Intermediate | High | Low | Low | |
The species lives in very weak to moderate water flows. Increases above this may provide more food but may also prevent the individual hydranths of the colony from remaining extended and feeding therefore, an intolerance of intermediate has been recorded. | ||||
No information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | Low | |
The species probably has very limited facility for visual perception. It occurs down to depths of 500 m so attenuation of light is probably of little importance. | ||||
No information | ||||
High | Moderate | Moderate | Low | |
The species is intolerant of high wave exposure and so is only found in sheltered areas. Increases in wave exposure above the preferred limits is likely to cause death, either through physical damage or prevention of feeding. See information on recoverability below. | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | High | |
The species is likely to have limited facility for detecting noise. | ||||
Tolerant | Not relevant | Not sensitive | High | |
The species probably has very limited facility for visual perception. It occurs down to depths of 500 m. Visual disturbance is probably of little importance. | ||||
Intermediate | High | Low | Low | |
Although the species is quite flexible and robust, abrasion may cause displacement, physical damage to the colonies or death. For example, erect epifauna have been reported to be particularly vulnerable to damage by fishing gear. For example, Magorrian & Service (1998) reported that trawling for queen scallops resulted in removal of emergent epifauna and damage to horse mussel beds in Strangford Lough. They suggested that the emergent epifauna were more intolerant than the horse mussels themselves and reflected early signs of damage (Service & Magorrian, 1997; Magorrian & Service, 1998; Service 1998). Veale et al., 2000 reported that the abundance, biomass and production of epifaunal assemblages decreased with increasing fishing effort. Therefore, a passing scallop dredge is likely to damage or remove a proportion of the population and an intolerance of intermediate has been recorded. Hydroids can regenerate from fragments, form resting stages and have considerable powers of repair (see Gili & Hughes, 1995). In a study of the long term effects of scallop dredging in the Irish Sea, Bradshaw et al. (2002) noted that the tough stemmed hydroids Nemertesia spp. increased in abundance, presumably because of their powers of regeneration, good local recruitment and ability to colonize newly exposed substratum quickly. Therefore, recoverability has been reported as high. | ||||
High | Moderate | Moderate | Low | |
The colonies of this species are permanently attached either to the substratum or to other colonies. On displacement individual colonies would be unable to re-attach and therefore an intolerance of high has been recorded. See information on recoverability below. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | ||||
No information | No information | No information | Not relevant | |
Cole et al. (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2mg/l. However, there is no information about Nemertesia ramosa tolerance to changes in oxygenation. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
Not relevant | Not relevant | Not relevant | Low | |
It is highly unlikely that the species would be extracted for any reason. | ||||
Tolerant | Not relevant | Not sensitive | Low | |
Nemertesia ramosa has no known obligate relationships. |
- no data -
National (GB) importance | - | Global red list (IUCN) category | - |
Native | - | ||
Origin | - | Date Arrived | - |
Ansín Agís, J., Ramil, F. & Vervoort, W., 2001. Atlantic Leptolida (Hydrozoa, Cnidaria) of the families Aglaopheniidae, Halopterididae, Kirchenpaueriidae and Plumulariidae collected during the CANCAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, the Netherlands. Zoologische Verhandelingen, no. 233, 268 pp.
Bradshaw, C., Veale, L.O., Hill, A.S. & Brand, A.R., 2002. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: a re-analysis of an historical dataset. Journal of Sea Research, 47, 161-184. DOI https://doi.org/10.1016/S1385-1101(02)00096-5
Gili, J-M. & Hughes, R.G., 1995. The ecology of marine benthic hydroids. Oceanography and Marine Biology: an Annual Review, 33, 351-426.
Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.
Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]
Hughes, R.G., 1977. Aspects of the biology and life-history of Nemertesia antennina (L.) (Hydrozoa: Plumulariidae). Journal of the Marine Biological Association of the United Kingdom, 57, 641-657.
Hughes, R.G., 1978. Life-histories and abundance of epizoites of the hydroid Nemertesia antennina (L.) Journal of the Marine Biological Association of the United Kingdom, 58, 313-332.
Jones, N.S., 1951. The bottom fauna of the south of the Isle of Man. Journal of Animal Ecology, 20, 132-144.
Magorrian, B.H. & Service, M., 1998. Analysis of underwater visual data to identify the impact of physical disturbance on horse mussel (Modiolus modiolus) beds. Marine Pollution Bulletin, 36, 354-359.
Picton, B.E. & Morrow, C.C., 2004. Nemertesia ramosa Lamouroux, 1816. http://www.habitas.org.uk/marinelife/species.asp?item=D5990, 2004-09-14
Service, M. & Magorrian, B.H., 1997. The extent and temporal variation of disturbance to epibenthic communities in Strangford Lough, Northern Ireland. Journal of the Marine Biological Association of the United Kingdom, 77, 1151-1164.
Service, M., 1998. Recovery of benthic communities in Strangford Lough following changes in fishing practice. ICES Council Meeting Paper, CM 1998/V.6, 13pp., Copenhagen: International Council for the Exploration of the Sea (ICES).
Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.
Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01
Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.
Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset:https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-06-03
South East Wales Biodiversity Records Centre, 2018. SEWBReC Marine and other Aquatic Invertebrates (South East Wales). Occurrence dataset:https://doi.org/10.15468/zxy1n6 accessed via GBIF.org on 2018-10-02.
This review can be cited as:
Last Updated: 15/09/2004